Escalas conocidas:
Filtro:
Escala: - Selecciona una - 00-12 (12): Standard12-tET 00-13 (13): Temperamento de 13 sonidos. Augusto Novaro, 1951. pp. 229 00-14 (14): Temperamento de 14 sonidos. Augusto Novaro, 1951. pp. 228-229 00-15 (15): Temperamento de 15 sonidos. Augusto Novaro, 1951. pp. 204-227 00-16 (16): Temperamento de 16 sonidos. Augusto Novaro, 1951. pp. 227-228 00-18 (18): Tercios de tono. 18 intervalos la octava no exacta. Julián Carrillo. Medidas para guitarra y guitarrón. 05-19 (5): 5 out of 19-tET 05-22 (5): Pentatonic "generator" of 09-22 05-24 (5): 5 out of 24-tET, symmetrical 06-41 (6): Hexatonic scale in 41-tET 07-19 (7): Nineteen-tone equal major 07-37 (7): Miller's Porcupine-7 08-11 (8): 8 out of 11-tET 08-13 (8): 8 out of 13-tET 08-19 (8): 8 out of 19-tET, Mandelbaum 08-19a (8): Kleismic, generator is 6/5, in 19-tET 08-37 (8): Miller's Porcupine-8 09-15 (9): Charyan scale of Andal, 1/1=a. Boudewijn Rempt, 1999. 09-19 (9): 9 out of 19-tET, Mandelbaum. Negri[9] 09-19a (9): Second strictly proper 9 out of 19 scale 09-22 (9): Three interval "Tryhill" scale in 22-tET, TL 05-12-2000 09-23 (9): 9 out of 23-tET, Dan Stearns 09-29 (9): Cycle of g=124.138 in 29-tET 10-13 (10): Carl Lumma, 10 out of 13-tET MOS, TL 21-12-1999 10-19 (10): 10 out of 19-tET. Negri[10] 10-29 (10): 10 out of 29-tET, chain of 124.138 cents intervals, Keenan 10-48 (10): Chain of 10 g=125 generators, in 48-tET 10-72 (10): Chain of 10 Miracle generators g=116.667, in 72-tET 11-19-gould (11): 11 out of 19-tET, Mark Gould, 2002 11-19-krantz (11): 11 out of 19-tET, Richard Krantz 11-19-mandel (11): 11 out of 19-tET, Joel Mandelbaum 11-19-mclaren (11): 11 out of 19-tET, Brian McLaren. Asc: 311313313 Desc: 313131313 11-23 (11): 11 out of 23-tET, Dan Stearns 11-31 (11): Jon Wild, 11 out of 31-tET, chain of "7/6"s. TL 9-9-99 12-19 (12): 12 out of 19-tET scale from Mandelbaum's dissertation 12-22 (12): Hexachordal 12-tone scale in 22-tET 12-22a (12): 12 out of 22-tET, Pythagorean. Paul Erlich, TL 4-4-2000 12-27 (12): 12 out of 27, Herman Miller's Galticeran scale 12-31 (12): 12 out of 31-tET, meantone Eb-G# 12-43 (12): 12 out of 43-tET (1/5-comma meantone) 12-46 (12): 12 out of 46-tET, diaschismic 12-50 (12): 12 out of 50-tET, meantone Eb-G# 12-55 (12): 12 out of 55-tET (1/6-comma meantone) 12-70 (12): Mix of 7-tET and 5-tET shifted 120 cents 12-91 (12): 12 out of 91-tET (1/7-comma meantone) 13-19 (13): 13 out of 19-tET, Mandelbaum 13-31 (13): 13 out of 31-tET 14-19 (14): 14 out of 19-tET, Mandelbaum 14-26 (14): Two interlaced diatonic in 26-tET, tetrachordal. Paul Erlich (1996) 14-26a (14): Two interlaced diatonic in 26-tET, maximally even. Paul Erlich (1996) 15-27-gram (15): 15 out of 27-ET, Gram tuning 15-27 (15): 15 out of 27-tET 15-37 (15): Miller's Porcupine-15 16-139 (16): g=9 steps of 139-tET. Gene Ward Smith "Quartaminorthirds" 7-limit temperament 17-31 (17): 17 out of 31, with split C#/Db, D#/Eb, F#/Gb, G#/Ab and A#/Bb 17-53 (17): 17 out of 53-tET, Arabic Pythagorean scale 19-31 (19): 19 out of 31-tET, meantone Gb-B# 19-31ji (19): A septimal interpretation of 19 out of 31 tones, after Wilson, XH7+8 19-36 (19): 19 out of 36-tET, Tomasz Liese, Tuning List, 1997 19-50 (19): 19 out of 50-tET, meantone Gb-B# 19-53 (19): 19 out of 53-tET by Larry H. Hanson, 1978 19-55 (19): 19 out of 55-tET, meantone Gb-B# 19-any (19): 2 out of 1/7 1/5 1/3 1 3 5 7 CPS 20-31 (20): 20 out of 31-tET 20-55 (20): 20 out of 55-tET, J. Chesnut: Mozart's teaching of intonation, JAMS 30/2 (1977) 21-any (21): 1.3.5.7.9.11.13 2)7 21-any, 1.3 tonic 22-41 (22): 22 out of 41 by Stephen Soderberg, TL 17-11-98 22-46 (22): 22 shrutis out of 46-tET by Graham Breed 22-53 (22): 22 shrutis out of 53-tET 24-36 (24): 12 and 18-tET mixed 24-41 (24): 24 out of 41-tET neutral third generator, 22 neutral triads, Op de Coul, 2001 24-60 (24): 12 and 15-tET mixed 24-94 (24): 24 tone schismic temperament in 94-et, Gene Ward Smith, 2002 28-any (26): 6)8 28-any from 1.3.5.7.9.11.13.15, only 26 tones 30-29-min3 (9): 30/29 x 29/28 x 28/27 plus 6/5 56-any (48): 3)8 56-any from 1.3.5.7.9.11.13.15, 1.3.5 tonic, only 48 notes 7-31strange (7): Strange diatonic-like strictly proper scale 70-any (70): 1.3.5.7.11.13.17.19 4)8 70-any, tonic 1.3.5.7 79-159 (79): 79 out of 159 MOS by Ozan Yarman b10_13 (10): 10-tET approximation with minimal order 13 beats b12_17 (12): 12-tET approximation with minimal order 17 beats b14_19 (14): 14-tET approximation with minimal order 19 beats b15_21 (15): 15-tET approximation with minimal order 21 beats b8_11 (8): 8-tET approximation with minimal order 11 beats bach2 (12): Well-temperament for Bach, from Jacob Breetvelt's Tuner badings1 (9): Henk Badings, harmonic scale, Lydomixolydisch badings2 (9): Henk Badings, subharmonic scale, Dorophrygisch bagpipe1 (12): Bulgarian bagpipe tuning bagpipe2 (9): Highland Bagpipe, from Acustica4: 231 (1954) J.M.A Lenihan and S. McNeill bagpipe3 (9): Highland Bagpipe, Allan Chatto, 1991. From Australian Pipe Band College bagpipe4 (9): Highland Bagpipe, Ewan Macpherson in 'NZ Pipeband', Winter 1998 bailey_ebwt (12): Paul Bailey's equal beating well temperament balafon (7): Observed balafon tuning from Patna, Helmholtz/Ellis p. 518, nr.81 balafon2 (7): Observed balafon tuning from West-Africa, Helmholtz/Ellis p. 518, nr.86 balafon3 (7): Pitt-River's balafon tuning from West-Africa, Helmholtz/Ellis p. 518, nr.87 balafon4 (7): Mandinka balafon scale from Gambia balafon5 (7): An observed balafon tuning from Singapore, Helmholtz/Ellis p. 518, nr.82 balafon6 (7): Observed balafon tuning from Burma, Helmholtz/Ellis p. 518, nr.84 balafon7 (5): Observed South Pacific pentatonic balafon tuning, Helmholtz/Ellis p. 518, nr.93 bamboo (23): Pythagorean scale with fifth average from Chinese bamboo tubes bapere (5): African, Bapere Horns Aerophone, made of reed, one note each barbour_chrom1 (7): Barbour's #1 Chromatic barbour_chrom2 (7): Barbour's #2 Chromatic barbour_chrom3 (7): Barbour's #3 Chromatic barbour_chrom3p (7): permuted Barbour's #3 Chromatic barbour_chrom3p2 (7): permuted Barbour's #3 Chromatic barbour_chrom4 (7): Barbour's #4 Chromatic barbour_chrom4p (7): permuted Barbour's #4 Chromatic barbour_chrom4p2 (7): permuted Barbour's #4 Chromatic barca (12): Barca barca_a (12): Barca A barkechli (27): Mehdi Barkechli, 27-tone pyth. Arabic scale barlow_13 (13): 7-limit rational 13-equal, Barlow, On the Quantification of Harmony and Metre barlow_17 (17): 11-limit rational 17-equal, Barlow, On the Quantification of Harmony and Metre barnes (12): John Barnes' temperament (1979) made after analysis of Wohltemperierte Klavier barton (12): Jacob Barton, tetratetradic scale on 6:7:9:11 barton2 (11): Jacob Barton, mode of 88CET, TL 17-01-2007 beardsley_8 (8): David Beardsley's scale used in "Sonic Bloom", 1999 becket (12): Quasi-equal temperament by the Becket and Co. plan (1840) beep (9): Beep temperament, g=268.056439, 5-limit belet (13): Belet, Brian 1992 Proceedings of the ICMC pp.158-161. bellingwolde (12): Current 1/6-P. comma mod.mean of Freytag organ in Bellingwolde. Ortgies,2002 bellingwolde_org (12): Original tuning of the Freytag organ in Bellingwolde bemetzrieder2 (12): Anton Bemetzrieder temperament 2 (1808), is Vallotti in F#. bendeler (12): J. Ph. Bendeler well temperament bendeler1 (12): Bendeler I temperament (c.1690), three 1/3P comma tempered fifths bendeler2 (12): Bendeler II temperament (c.1690), three 1/3P comma tempered fifths bendeler3 (12): Bendeler III temperament (c.1690), four 1/4P tempered fifths bermudo (12): Irregular temperament of Fr.J. Bermudo (1555) bethisy (12): Bethisy temperament ordinaire, see Pierre-Yves Asselin: Musique et temperament biezen (12): Jan van Biezen modified meantone (1974) biezen2 (12): Jan van Biezen 2, also Siracusa (early 17th cent.), modified 1/4 comma MT biezen3 (12): Jan van Biezen 3 (2004) biggulp (12): Big Gulp bigler12 (12): Kurt Bigler, JI organ tuning, TL 28-3-2004 billeter (12): Organ well temperament of Otto Bernhard Billeter blackbeat15 (15): generator g is unique real root of 9g^5+20g^4+80g^3-128 = 0 blackchrome2 (10): Second 25/24&256/245 scale blackjack (21): 21 note MOS of "MIRACLE" temperament, Erlich & Keenan, miracle1,TL 2-5-2001 blackjack_r (21): Rational "Wilson/Grady"-style version, Paul Erlich, TL 28-11-2001 blackjack_r2 (21): Another rational Blackjack maximising 1:3:7:9:11, Paul Erlich, TL 5-12-2001 blackjack_r3 (21): 7-Limit rational Blackjack, Dave Keenan, TL 5-12-2001 blackjackg (21): Blackjack on G-D blackwood (25): Blackwood temperament, g=84.663787, p=240, 5-limit blackwood_6 (6): Easley Blackwood, whole tone scale, arrangement of 4:5:7:9:11:13, 1/1=G, p.114 blackwood_9 (9): Blackwood, scale with pure triads on I II III IV VI and dom.7th on V. page 83 blasquinten (23): Blasquintenzirkel. 23 fifths in 2 oct. C. Sachs, Vergleichende Musikwiss. p. 28 boeth_chrom (7): Boethius's Chromatic. The CI is 19/16 boeth_enh (8): Boethius's Enharmonic, with a CI of 81/64 and added 16/9 bohlen-eg (13): Bohlen-Pierce with two tones altered by minor BP diesis, slightly more equal bohlen-p (13): See Bohlen, H. 13-Tonstufen in der Duodezime, Acustica 39: 76-86 (1978) bohlen-p_9 (9): Bohlen-Pierce subscale by J.R. Pierce with 3:5:7 triads bohlen-p_9a (9): Pierce's 9 of 3\13, see Mathews et al., J. Acoust. Soc. Am. 84, 1214-1222 bohlen-p_eb (13): Bohlen-Pierce scale with equal beating 5/3 and 7/3 bohlen-p_ebt (13): Bohlen-Pierce scale with equal beating 7/3 tenth bohlen-p_ebt2 (13): Bohlen-Pierce scale with equal beating 7/5 tritone bohlen-p_et (13): 13-tone equal division of 3/1. Bohlen-Pierce equal approximation bohlen47 (21): Heinz Bohlen, mode of 4\47 (1998), members.aol.com/bpsite/pythagorean.html bohlen47r (23): Rational version, with alt.9 64/49 and alt.38 40/13 bohlen5 (13): 5-limit version of Bohlen-Pierce bohlen_11 (11): 11-tone scale by Bohlen, generated from the 1/1 3/2 5/2 triad bohlen_12 (12): 12-tone scale by Bohlen generated from the 4:7:10 triad, Acustica 39/2, 1978 bohlen_8 (8): See Bohlen, H. 13-Tonstufen in der Duodezime, Acustica 39: 76-86 (1978) bohlen_coh (13): Differentially coherent Bohlen-Pierce, interval=2 bohlen_d_ji (9): Bohlen's delta scale, just version. "Dur" form, "moll" is inversion. bohlen_delta (9): Bohlen's delta scale, a mode B-P, see Acustica 39: 76-86 (1978) bohlen_enh (49): Bohlen-Pierce scale, all enharmonic tones bohlen_eq (13): Most equal selection from all enharmonic Bohlen-Pierce tones bohlen_g_ji (9): Bohlen's gamma scale, just version bohlen_gamma (9): Bohlen's gamma scale, a mode of the Bohlen-Pierce scale bohlen_h_ji (9): Bohlen's harmonic scale, just version bohlen_harm (9): Bohlen's harmonic scale, inverse of lambda bohlen_l_ji (9): Bohlen's lambda scale, just version bohlen_lambda (9): Bohlen's lambda scale, a mode of the Bohlen-Pierce scale bohlen_lambda_pyth (9): Dave Benson's BP-Pythagorean scale, lambda mode of bohlen_pyth bohlen_mean (13): 1/3 minor BP diesis (245/243) tempered 7/3 meantone scale bohlen_pyth (13): Cycle of 13 7/3 BP tenths bohlen_t (8): Bohlen, scale based on the twelfth bohlen_t_ji (8): Bohlen, scale based on twelfth, just version bolivia (7): Observed scale from pan-pipe from La Paz. 1/1=171 Hz. boomsliter (12): Boomsliter & Creel basic set of their referential tuning. bossard (12): Ferdinand Bossard's Modified meantone (1743/44), organ in Klosterkirche Muri boulliau (12): Monsieur Boulliau's irregular temp. (1373), reported by Mersenne in 1636. bourdelle1 (88): Compromis Cordier, piano tuning by Jean-Pierre Chainais bpg55557777 (25): Bohlen-Pierce extended to [55557777] bps_temp17 (17): Bohlen-Pierce-Stearn temperament. Highest 7-limit error 8.4 cents, 2001 brac (12): Circulating temperament with simple beat ratios: 4 3/2 4 3/2 2 2 177/176 4 3/2 2 3/2 2 breed-blues1 (7): Graham Breed's blues scale in 22-tET breed-blues2 (8): Graham Breed's blues scale in 29-tET breed-dias13 (46): 13-limit Diaschismic temperament, g=103.897, oct=1/2, 13-limit breed-ht (19): Hemithird temperament, g=193.202, 5-limit breed-kleismic (7): Kleismic temperament, g=317.080, 5-limit breed-magic (13): Graham Breed's Magic temperament, g=380.384, 9-limit, close to 41-tET breed-magic5 (19): Magic temperament, g=379.967949, 5-limit breed-mult29 (58): Multiple-29 temperament, g=15.563, oct=1/29, 15-limit breed (12): Graham Breed's fourth based 12-tone keyboard scale. Tuning List 23-10-97 breed4-3 (7): Graham Breed's neutral third chain subset of 7+3 scale in 24-tET breed7-3 (10): Graham Breed's 7 + 3 scale in 24-tET breedball3 (12): Third Breed ball around 49/40-7/4 breedball4 (14): Fourth Breed ball around 49/40-7/4 breedpump (16): Comma pump in breed (2401/2400 planar) [[1, 1, -2]->[1, 1, -1]->[0, 1, -1]->[0, 0, -1]->[0, 0, 0]->[0, -1, 0],[0, -1, 1]->[0, -2, 1]->[-1, -2, 1] breedt1 (12): Graham Breed's 1/4 P temperament, TL 10-06-99 breedt2 (12): Graham Breed's 1/5 P temperament, TL 10-06-99 breedt3 (12): Graham Breed's other 1/4 P temperament, TL 10-06-99 brown (45): Tuning of Colin Brown's Voice Harmonium, Glasgow. Helmholtz/Ellis p. 470-473 bruder (12): Ignaz Bruder organ temperament (1829) according to P. Vier burma3 (7): Burmese scale, von Hornbostel burt-forks (19): Warren Burt 19-tone Forks. Interval 5(3): pp. 13+23 Winter 1986-87 burt1 (12): W. Burt's 13diatsub #1 burt10 (12): W. Burt's 19enhsub #10 burt11 (12): W. Burt's 19enhharm #11 burt12 (12): W. Burt's 19diatharm #12 burt13 (12): W. Burt's 23diatsub #13 burt14 (12): W. Burt's 23enhsub #14 burt15 (12): W. Burt's 23enhharm #15 burt16 (12): W. Burt's 23diatharm #16 burt17 (36): W. Burt's "2 out of 3,5,11,17,31 dekany" CPS with 1/1=3/1. 1/1 vol. 10(1) '98 burt18 (36): W. Burt's "2 out of 1,3,5,7,11 dekany" CPS with 1/1=1/1. 1/1 vol. 10(1) '98 burt19 (20): W. Burt's "2 out of 2,3,4,5,7 dekany" CPS with 1/1=1/1. 1/1 vol. 10(1) '98 burt2 (12): W. Burt's 13enhsub #2 burt20 (12): Warren Burt tuning for "Commas" (1993) 1/1=263. XH 16 burt3 (12): W. Burt's 13enhharm #3 burt4 (12): W. Burt's 13diatharm #4, see his post 3/30/94 in Tuning Digest #57 burt5 (12): W. Burt's 17diatsub #5 burt6 (12): W. Burt's 17enhsub #6 burt7 (12): W. Burt's 17enhharm #7 burt8 (12): W. Burt's 17diatharm #8 burt9 (12): W. Burt's 19diatsub #9 burt_fibo (12): Warren Burt, 3/2+5/3+8/5+etc. "Recurrent Sequences", 2002 burt_fibo23 (23): Warren Burt, 23-tone Fibonacci scale. "Recurrent Sequences", 2002 burt_primes (54): Warren Burt, primes until 251. "Some Numbers", Dec. 2002 bushmen (4): Observed scale of South-African bushmen, almost (4 notes) equal pentatonic dan_semantic (35): The Semantic Scale, from Alain Daniïlou: "Sïmantique Musicale" (1967) danielou5_53 (53): Daniïlou's Harmonic Division in 5-limit, symmetrized danielou_53 (53): Daniïlou's Harmonic Division of the Octave, see p. 153 darreg (19): This set of 19 ratios in 5-limit JI is for his megalyra family darreg_ennea (9): Ivor Darreg's Mixed Enneatonic, a mixture of chromatic and enharmonic darreg_genus (9): Ivor Darreg's Mixed JI Genus (Archytas Enh, Ptolemy Soft Chrom, Didymos Chrom darreg_genus2 (9): Darreg's Mixed JI Genus 2 (Archytas Enharmonic and Chromatic Genera) david11 (22): 11-limit system from Gary David, 1967 david7 (12): Gary David's Constant Structure, 1967. A mode of Fokker's 7-limit scale ddimlim1 (14): First 27/25&2048/1875 scale de_caus (12): De Caus (a mode of Ellis's duodene) (1615) degung1 (5): Gamelan Degung, Kabupaten Sukabumi. 1/1=363 Hz degung2 (5): Gamelan Degung, Kabupaten Bandung. 1/1=252 Hz degung3 (5): Gamelan Degung, Kabupaten Sumedang. 1/1=388.5 Hz degung4 (5): Gamelan Degung, Kasepuhan Cheribon. 1/1=250 Hz degung5 (5): Gamelan Degung, Kanoman Cheribon. 1/1=428 Hz degung6 (5): Gamelan Degung, Kacherbonan Cheribon. 1/1=426 Hz dekany (10): 2)5 Dekany 1.3.5.7.11 (1.3 tonic) dekany2 (10): 3)5 Dekany 1.3.5.7.9 (1.3.5.7.9 tonic) dekany3 (10): 2)5 Dekany 1.3.5.7.9 and 3)5 Dekany 1 1/3 1/5 1/7 1/9 dekany4 (10): 2)5 Dekany 1.7.13.19.29 (1.7 tonic) dekany_union (14): Union of 2)5 and 3)5 [ 1 3 5 7 9] dekanies dent (12): Tom Dent, well temperament with A=421 Hz. Integer Hz beat rates from A dent2 (12): Tom Dent, well-temperament, 2/32 and 5/32 comma. TL 3 & 5-9-2005 dent3 (12): Tom Dent, Bach harpsichord "sine wave" temperament, TL 10-10-2005 deporcy (15): A 15-note chord-based detempering of 7-limit porcupine diab19_612 (19): diab19a in 612-tET diab19_72 (19): diab19a in 72-tET diablack (10): Unique 256/245&2048/2025 Fokker block diachrome1 (10): First 25/24&2048/2025 scale diacycle13 (23): Diacycle on 20/13, 13/10; there are also nodes at 3/2, 4/3; 13/9, 18/13 diaddim1 (14): First 2048/2025&2048/1875 scale dialim1 (14): First 27/25&2048/2025 scale diamisty (12): Diamisty scale 2048/2025 and 67108864/66430125 diamond11a (31): 11-limit Diamond with added 16/15 & 15/8, Zoomoozophone tuning: 1/1 = 392 Hz diamond11ak (31): microtempered version of diamond11a, Dave Keenan TL 11-1-2000, 225/224&385/384 diamond11at (31): microtempered version of diamond11a, OdC diamond11map (72): 11-limit diamond on a 'centreless' map diamond15 (59): 15-limit Diamond + 2nd ratios. See Novaro, 1927, Sistema Natural... diamond17 (43): 17-limit Diamond diamond17a (55): 17-limit, +9 Diamond diamond19 (57): 19-limit Diamond diamond7 (13): 7-limit Diamond, also double-tie circular mirroring of 4:5:6:7 diamond9 (19): 9-limit Diamond diamond_chess (11): 9-limit chessboard pattern diamond. OdC diamond_chess11 (17): 11-limit chessboard pattern diamond. OdC diamond_dup (20): Two 7-limit diamonds 3/2 apart diamond_mod (13): 13-tone Octave Modular Diamond, based on Archytas's Enharmonic diamond_tetr (8): Tetrachord Modular Diamond based on Archytas's Enharmonic diaphonic_10 (10): 10-tone Diaphonic Cycle diaphonic_12 (12): 12-tone Diaphonic Cycle, conjunctive form on 3/2 and 4/3 diaphonic_12a (12): 2nd 12-tone Diaphonic Cycle, conjunctive form on 10/7 and 7/5 diaphonic_5 (5): D5-tone Diaphonic Cycle diaphonic_7 (7): 7-tone Diaphonic Cycle, disjunctive form on 4/3 and 3/2 diaschismic (22): diaschismic temperament, g=105.446531, p=600, 5-limit diat13 (7): This genus is from K.S's diatonic Hypodorian harmonia diat15 (8): Tonos-15 Diatonic and its own trite synemmenon Bb diat15_inv (8): Inverted Tonos-15 Harmonia, a harmonic series from 15 from 30. diat17 (8): Tonos-17 Diatonic and its own trite synemmenon Bb diat19 (8): Tonos-19 Diatonic and its own trite synemmenon Bb diat21 (8): Tonos-21 Diatonic and its own trite synemmenon Bb diat21_inv (8): Inverted Tonos-21 Harmonia, a harmonic series from 21 from 42. diat23 (8): Tonos-23 Diatonic and its own trite synemmenon Bb diat25 (8): Tonos-25 Diatonic and its own trite synemmenon Bb diat27 (8): Tonos-27 Diatonic and its own trite synemmenon Bb diat27_inv (8): Inverted Tonos-27 Harmonia, a harmonic series from 27 from 54 diat29 (8): Tonos-29 Diatonic and its own trite synemmenon Bb diat31 (8): Tonos-31 Diatonic. The disjunctive and conjunctive diatonic forms are the same diat33 (8): Tonos-33 Diatonic. The conjunctive form is 23 (Bb instead of B) 20 18 33/2 diat_chrom (7): Diatonic- Chromatic, on the border between the chromatic and diatonic genera diat_dies2 (7): Dorian Diatonic, 2 part Diesis diat_dies5 (7): Dorian Diatonic, 5 part Diesis diat_enh (7): Diat. + Enharm. Diesis, Dorian Mode diat_enh2 (7): Diat. + Enharm. Diesis, Dorian Mode 3 + 12 + 15 parts diat_enh3 (7): Diat. + Enharm. Diesis, Dorian Mode, 15 + 3 + 12 parts diat_enh4 (7): Diat. + Enharm. Diesis, Dorian Mode, 15 + 12 + 3 parts diat_enh5 (7): Dorian Mode, 12 + 15 + 3 parts diat_enh6 (7): Dorian Mode, 12 + 3 + 15 parts diat_eq (7): Equal Diatonic, Islamic form, similar to 11/10 x 11/10 x 400/363 diat_eq2 (7): Equal Diatonic, 11/10 x 400/363 x 11/10 diat_gold (7): Diatonic scale with ratio between whole and half tone the Golden Section diat_hemchrom (7): Diat. + Hem. Chrom. Diesis, Another genus of Aristoxenos, Dorian Mode diat_smal (7): "Smallest number" diatonic scale diat_sofchrom (7): Diat. + Soft Chrom. Diesis, Another genus of Aristoxenos, Dorian Mode diat_soft (7): Soft Diatonic genus 5 + 10 + 15 parts diat_soft2 (7): Soft Diatonic genus with equally divided Pyknon; Dorian Mode diat_soft3 (7): New Soft Diatonic genus with equally divided Pyknon; Dorian Mode; 1:1 pyknon diat_soft4 (7): New Soft Diatonic genus with equally divided Pyknon; Dorian Mode; 1:1 pyknon dicot (10): Dicot temperament, g=350.9775, 5-limit didy_chrom (7): Didymus Chromatic didy_chrom1 (7): Permuted Didymus Chromatic didy_chrom2 (7): Didymos's Chromatic, 6/5 x 25/24 x 16/15 didy_chrom3 (7): Didymos's Chromatic, 25/24 x 16/15 x 6/5 didy_diat (7): Didymus Diatonic didy_diatinv (7): Inverse Didymus Diatonic, variant of Ptolemy with 2 identical triads didy_enh (7): Dorian mode of Didymos's Enharmonic didy_enh2 (7): Permuted Didymus Enharmonic diesic-m (7): Minimal Diesic temperament, g=176.021, 5-limit diesic-t (19): Tiny Diesic temperament, g=443.017, 5-limit diff31_72 (31): Diff31, 11/9, 4/3, 7/5, 3/2, 7/4, 9/5 difference diamond, tempered to 72-et dimteta (7): A heptatonic form on the 9/7 dimtetb (5): A pentatonic form on the 9/7 div_fifth1 (5): Divided Fifth #1, From Schlesinger, see Chapter 8, p. 160 div_fifth2 (5): Divided Fifth #2, From Schlesinger, see Chapter 8, p. 160 div_fifth3 (5): Divided Fifth #3, From Schlesinger, see Chapter 8, p. 160 div_fifth4 (5): Divided Fifth #4, From Schlesinger, see Chapter 8, p. 160 div_fifth5 (5): Divided Fifth #5, From Schlesinger, see Chapter 8, p. 160 dkring1 (12): Double-tie circular mirroring of 4:5:6:7 dkring2 (12): Double-tie circular mirroring of 3:5:7:9 dkring3 (12): Double-tie circular mirroring of 6:7:8:9 dkring4 (12): Double-tie circular mirroring of 7:8:9:10 dodeceny (12): Degenerate eikosany 3)6 from 1.3.5.9.15.45 tonic 1.3.15 dorian_chrom (24): Dorian Chromatic Tonos dorian_chrom2 (7): Schlesinger's Dorian Harmonia in the chromatic genus dorian_chrominv (7): A harmonic form of Schlesinger's Chromatic Dorian inverted dorian_diat (24): Dorian Diatonic Tonos dorian_diat2 (8): Schlesinger's Dorian Harmonia, a subharmonic series through 13 from 22 dorian_diat2inv (8): Inverted Schlesinger's Dorian Harmonia, a harmonic series from 11 from 22 dorian_diatcon (7): A Dorian Diatonic with its own trite synemmenon replacing paramese dorian_diatred11 (7): Dorian mode of a diatonic genus with reduplicated 11/10 dorian_enh (24): Dorian Enharmonic Tonos dorian_enh2 (7): Schlesinger's Dorian Harmonia in the enharmonic genus dorian_enhinv (7): A harmonic form of Schlesinger's Dorian enharmonic inverted dorian_pent (7): Schlesinger's Dorian Harmonia in the pentachromatic genus dorian_pis (15): Diatonic Perfect Immutable System in the Dorian Tonos, a non-rep. 16 tone gamut dorian_schl (12): Schlesinger's Dorian Piano Tuning (Sub 22) dorian_tri1 (7): Schlesinger's Dorian Harmonia in the first trichromatic genus dorian_tri2 (7): Schlesinger's Dorian Harmonia in the second trichromatic genus douwes (12): Claas Douwes recommendation of 24/23 and 15/14 steps for clavichord (1699) dow_high (14): Highest octave of Dowlands lute tuning, strings 5,6. 1/1=G (1610) dow_lmh (55): All three octaves of Dowland's lute tuning dow_low (17): Lowest octave of Dowlands lute tuning, strings 1,2,3. 1/1=G. (1610) dow_middle (24): Middle octave of Dowlands lute tuning, strings 3,4,5. 1/1=G (1610) dowland_12 (12): subset of Dowland's lute tuning, lowest octave druri (4): Scale of druri dana of Siwoli, south Nias, Jaap Kunst dudon_a (7): Dudon Tetrachord A dudon_b (7): Dudon Tetrachord B dudon_c12 (7): Differentially coherent scale in interval class 1 and 2 dudon_diat (7): Dudon Neutral Diatonic dudon_moha_baya (7): Mohajira + Bayati (Dudon) 3 + 4 + 3 Mohajira and 3 + 3 + 4 Bayati tetrachords dudon_mohajira (7): Dudon's Mohajira, two 3 + 4 + 3 tetrachords, neutral diatonic dudon_mohajira_r (7): Jacques Dudon, JI Mohajira, Lumiïres audibles dudon_thai (7): Dudon, coherent Thai heptatonic scale, 1/1 vol. 11/2, 2003 dudon_thai2 (7): Slightly better version, 3.685 cents deviation dudon_thai3 (7): Dudon, Thai scale with two 704/703 = 2.46 c. deviations and simpler numbers duncan (12): Dudley Duncan's Superparticular Scale duoden12 (12): Almost equal 12-tone subset of Duodenarium duodenarium (117): Ellis's Duodenarium : genus [3^12 5^8] duodene (12): Ellis's Duodene : genus [33355] duodene14-18-21 (12): 14-18-21 Duodene duodene3-11_9 (12): 3-11/9 Duodene duodene3-7 (12): 3-7 Duodene duodene6-7-9 (12): 6-7-9 Duodene duodene_min (12): Minor Duodene duodene_r-45 (12): Ellis's Duodene rotated -45 degrees duodene_r45 (12): Ellis's Duodene rotated 45 degrees duodene_r90 (12): Ellis's Duodene rotated 90 degrees: genus [33555] duodene_skew (12): Rotated 6/5x3/2 duodene duodene_t (12): Duodene with equal tempered fifths duowell (12): Ellis duodene well-tuned to fifth=(7168/11)^(1/16) third=(11/7)^(1/2) dwarf6_7 (6): Dwarf(<6 10 14 17|) cairo (26): P.42, of d'Erlanger, vol.5. Congress of Arabic Music, Cairo, 1932 canright (9): David Canright's piano tuning for "Fibonacci Suite" (2001) carlos_alpha (18): Wendy Carlos' Alpha scale with perfect fifth divided in nine carlos_alpha2 (36): Wendy Carlos' Alpha prime scale with perfect fifth divided by eightteen carlos_beta (22): Wendy Carlos' Beta scale with perfect fifth divided by eleven carlos_beta2 (44): Wendy Carlos' Beta prime scale with perfect fifth divided by twentytwo carlos_gamma (35): Wendy Carlos' Gamma scale with third divided by eleven or fifth by twenty carlos_harm (12): Carlos Harmonic & Ben Johnston's scale of 'Blues' from Suite f.micr.piano (1977) & David Beardsley's scale of 'Science Friction' carlos_super (12): Carlos Super Just carlson (19): Brian Carlson's guitar scale (or 7 is 21/16 instead) fretted by Mark Rankin cassandra1 (41): Cassandra temperament (Erv Wilson), 13-limit, g=497.866 cassandra2 (41): Cassandra temperament, schismic variant, 13-limit, g=497.395 catler (24): Catler 24-tone JI from "Over and Under the 13 Limit", 1/1 3(3) cbrat19 (19): brats = -1 -1 -1 -1 -1 -1 -1 -1 0 3/7 390808/591947 1/2 1/2 1/2 1/2 1/4 0 0 -1 ceb88f (13): 88 cents steps with equal beating fifths ceb88s (14): 88 cents steps with equal beating sevenths ceb88t (14): 88 cents steps with equal beating 7/6 thirds cet105 (13): Equal temperament with very good 6/5 and 13/8 cet105a (18): 18th root of 3 cet111 (25): 25th root of 5, Karlheinz Stockhausen in "Studie II" (1954) cet111a (17): 17th root of 3. McLaren 'Microtonal Music', volume 1, track 8 cet112 (53): 53rd root of 31. McLaren 'Microtonal Music', volume 4, track 16 cet114 (21): 21st root of 4 cet115 (10): 2nd root of 8/7. Werner Linden, Musiktheorie, 2003 no.1 midi 15.Eb=19.44544 Hz cet117 (36): 72nd root of 128, step = generator of Miracle cet118 (16): 16th root of 3. McLaren 'Microtonal Music', volume 1, track 7 cet126 (15): 15th root of 3. McLaren 'Microtonal Music', volume 1, track 6 cet126a (19): 19th root of 4 cet133 (13): 13th root of e cet140 (24): 24th root of 7 cet141 (17): 17th root of 4 cet146 (13): 13th root of 3, Bohlen-Pierce approximation cet148 (21): 21th root of 6, Moreno's C-21 cet152 (13): 13th root of pi cet158 (12): 12th root of 3, Moreno's A-12, see dissertation "Embedding Equal Pitch Spaces. cet159 (8): 4e-th root of e. e-th root of e is highest x-th root of x cet160 (15): 15th root of 4, Rudolf Escher in "The Long Christmas Dinner" (1960) cet160a (37): 37th root of 31. McLaren 'Microtonal Music', volume 2, track 7 cet163 (9): 9th root of 7/3. Jeff Scott in "Quiet Moonlight" (2001) cet163a (8): 5th root of 8/5 cet166 (3): 3rd root of 4/3 cet173 (11): 11th root of 3, Moreno's A-11 cet175 (28): 28th root of 7. McLaren 'Microtonal Music', volume 6, track 3 cet175a (7): 4th root of 3/2 cet178 (27): 27th root of 16 cet181 (16): 6.625 tET. The 16/3 is the so-called Kidjel Ratio promoted by Maurice Kidjel in 1958 cet182 (17): 17th root of 6, Moreno's C-17 cet195 (7): 7th root of 11/5 cet21k (56): scale of syntonic comma's, almost 56-tET cet222 (14): 14th root of 6, Moreno's C-14 cet233 (21): 21st root of 17. McLaren 'Microtonal Music', volume 2, track 15 cet24 (50): least squares fit primes 2-13 cet258 (12): 12th root of 6, Moreno's C-12 cet29 (95): 95th root of 5 cet39 (49): 49th root of 3 cet39a (31): 31-tET with least squares octave; equal weight to 5/4, 3/2, 7/4 and 2/1 cet39b (31): 31-tET with l.s. 8/7, 5/4, 4/3, 3/2, 8/5, 7/4, 2/1; equal weights cet39c (31): 10th root of 5/4 cet39d (31): 31-tET with l.s. 5/4, 3/2, 7/4 cet39e (15): 15th root of 7/5, X.J. Scott cet44 (28): least maximum error of 10.0911 cents to a set of 11-limit consonances cet45 (11): 11th root of 4/3 cet45a (13): 13th root of 7/5, X.J. Scott cet49 (25): least squares fit primes 3-13 cet49a (25): least squares fit primes 5-13 cet49b (25): least squares fit primes 3-11 cet51 (47): 47nd root of 4 cet53 (5): 5th root of 7/6, X.J. Scott cet54 (62): 62nd root of 7 cet54a (101): 101st root of 24 cet54b (35): 35th root of 3 or shrunk 22-tET cet55 (51): 51th root of 5 cet55a (9): 9th root of 4/3 cet63 (30): 30th root of 3 or stretched 19-tET cet63a (44): 44th root of 5 cet67 (14): 14th root of 12/7, X.J. Scott cet70 (27): 27th root of 3 cet78 (9): 9th root of 3/2 cet79 (24): 24th root of 3, James Heffernan (1906). cet80 (35): 35th root of 5 cet84 (33): 33rd root of 5 cet87 (15): Least-squares stretched ET to telephone dial tones. 1/1=697 Hz cet88 (14): 88 cents steps by Gary Morrison cet88_appr (22): 88 cents scale approximated cet88b (14): 87.9745 cents steps. Least squares of 7/6, 11/9, 10/7, 3/2, 7/4. cet88bis (7): Bistep approximation of 2212121 mode in 7/4 to 11/9 9/7 10/7 3/2 cet88bm (14): 87.75412 cents steps. Minimal highest deviation for 7/6, 11/9, 10/7, 3/2, 7/4. cet88c (38): 38th root of 7. McLaren 'Microtonal Music', volume 3, track 7 cet89 (31): 31st root of 5. McLaren 'Microtonal Music', volume 2, track 22 cet90 (17): Scale with limma steps cet93 (9): Tuning used in John Chowning's STRIA, 9th root of Phi cet98 (8): 8th root of 11/7, X.J. Scott chahargah (12): Chahargah in C chahargah2 (7): Dastgah Chahargah in C, Mohammad Reza Gharib chalmers (19): Chalmers' 19-tone with more hexanies than Perrett's Tierce-Tone chalmers_17 (17): 7-limit figurative scale, Chalmers '96 Adnexed S&H decads chalmers_19 (19): 7-limit figurative scale. Reversed S&H decads chalmers_csurd (15): Combined Surd Scale, combination of Surd and Inverted Surd, JHC, 26-6-97 chalmers_isurd (8): Inverted Surd Scale, of the form 4/(SQRT(N)+1, JHC, 26-6-97 chalmers_ji1 (12): Based loosely on Wronski's and similar JI scales, May 2, 1997. chalmers_ji2 (12): Based loosely on Wronski's and similar JI scales, May 2, 1997. chalmers_ji3 (12): 15 16 17 18 19 20 21 on 1/1, 15-20 on 3/2, May 2, 1997. See other scales chalmers_ji4 (12): 15 16 17 18 19 20 on 1/1, same on 4/3, + 16/15 on 16/9 chalmers_surd (8): Surd Scale, Surds of the form (SQRT(N)+1)/2, JHC, 26-6-97 chalmers_surd2 (40): Surd Scale, Surds of the form (SQRT(N)+1)/4 chalung (11): Tuning of chalung from Tasikmalaya. "slendroid". 1/1=185 Hz chaumont (12): Lambert Chaumont organ temperament (1695), 1st interpretation chaumont2 (12): Lambert Chaumont organ temperament (1695), 2nd interpretation chimes (3): Heavenly Chimes chimes_peck (8): Kris Peck, 9-tone windchime tuning. TL 7-3-2001 chin_12 (12): Chinese scale, 4th cent. chin_5 (5): Chinese pentatonic from Zhou period chin_60 (60): Chinese scale of fifths (the 60 lu") chin_7 (7): Chinese heptatonic scale and tritriadic of 64:81:96 triad chin_bianzhong (12): Pitches of Bianzhong bells (Xinyang). 1/1=b, Liang Mingyue, 1975. chin_bianzhong2a (12): A-tones (GU) of 13 Xinyang bells (Ma Cheng-Yuan) 1/1=d#=619 Hz chin_bianzhong2b (12): B-tones (SUI) of 13 Xinyang bells (Ma Cheng-Yuan) 1/1=b+=506.6 Hz chin_bianzhong3 (26): A and B-tones of 13 Xinyang bells (Ma Cheng-Yuan) abs. pitches wrt middle-C chin_bronze (7): Scale found on ancient Chinese bronze instrument 3rd c.BC & "Scholar's Lute" chin_chime (12): Pitches of 12 stone chimes, F. Kuttner, 1951, ROMA Toronto. %1=b4 chin_ching (12): Scale of Ching Fang, c.45 BC. Pyth.steps 0 1 2 3 4 5 47 48 49 50 51 52 53 chin_di (6): Chinese di scale chin_di2 (7): Observed tuning from Chinese flute dizi, Helmholtz/Ellis p. 518, nr.103 chin_huang (6): Huang Zhong qin tuning chin_liu-an (11): Scale of Liu An, in: "Huai Nan Tzu", c.122 BC, 1st known corr. to Pyth. scale chin_lu (12): Chinese Lï scale by Huai Nan zi, Han era. Pïre Amiot 1780, Kurt Reinhard chin_lu2 (12): Chinese Lï (Lushi chunqiu, by Lu Buwei). Mingyue: Music of the billion, p.67 chin_lu3 (12): Chinese Lï scale by Ho Ch'ïng-T'ien, reported in Sung Shu (500 AD) chin_lu3a (12): Chinese Lï scale by Ho Ch'ïng-T'ien, calc. basis is "big number" 177147 chin_lu4 (12): Chinese Lï "749-Temperament" chin_lu5 (12): Chinese Lï scale by Ch'ien Lo-Chih, c.450 AD Pyth.steps 0 154 255 103 204 etc. chin_lusheng (5): Observed tuning of a small Lusheng, 1/1=d, OdC '97 chin_pan (23): Pan Huai-su pure system, in: Sin-Yan Shen, 1991 chin_pipa (5): Observed tuning from Chinese balloon lute p'i-p'a, Helmholtz/Ellis p. 518, nr.109 chin_sheng (7): Observed tuning from Chinese sheng or mouth organ, Helmholtz/Ellis p. 518, nr.105 chin_sientsu (5): Observed tuning from Chinese tamboura sienzi, Helmholtz/Ellis p. 518, nr.108 chin_sona (7): Observed tuning from Chinese oboe (so-na), Helmholtz/Ellis p. 518, nr.104 chin_wang-po (7): Scale of Wang Po, 958 AD. H. Pischner: Musik in China, Berlin, 1955, p.20 chin_yangqin (7): Observed tuning from Chinese dulcimer yangqin, Helmholtz/Ellis p. 518, nr.107 chin_yunlo (7): Observed tuning from Chinese gong-chime (yïn-lo), Helmholtz/Ellis p. 518, nr.106 choquel (12): Choquel/Barbour/Marpurg? chordal (40): Chordal Notes S&H chrom15 (7): Tonos-15 Chromatic chrom15_inv (7): Inverted Chromatic Tonos-15 Harmonia chrom15_inv2 (7): A harmonic form of the Chromatic Tonos-15 inverted chrom17 (7): Tonos-17 Chromatic chrom17_con (7): Conjunct Tonos-17 Chromatic chrom19 (7): Tonos-19 Chromatic chrom19_con (7): Conjunct Tonos-19 Chromatic chrom21 (7): Tonos-21 Chromatic chrom21_inv (7): Inverted Chromatic Tonos-21 Harmonia chrom21_inv2 (7): Inverted harmonic form of the Chromatic Tonos-21 chrom23 (7): Tonos-23 Chromatic chrom23_con (7): Conjunct Tonos-23 Chromatic chrom25 (7): Tonos-25 Chromatic chrom25_con (7): Conjunct Tonos-25 Chromatic chrom27 (7): Tonos-27 Chromatic chrom27_inv (7): Inverted Chromatic Tonos-27 Harmonia chrom27_inv2 (7): Inverted harmonic form of the Chromatic Tonos-27 chrom29 (7): Tonos-29 Chromatic chrom29_con (7): Conjunct Tonos-29 Chromatic chrom31 (8): Tonos-31 Chromatic. Tone 24 alternates with 23 as MESE or A chrom31_con (8): Conjunct Tonos-31 Chromatic chrom33 (7): Tonos-33 Chromatic. A variant is 66 63 60 48 chrom33_con (7): Conjunct Tonos-33 Chromatic chrom_new (7): New Chromatic genus 4.5 + 9 + 16.5 chrom_new2 (7): New Chromatic genus 14/3 + 28/3 + 16 parts chrom_soft (7): 100/81 Chromatic. This genus is a good approximation to the soft chromatic chrom_soft2 (7): 1:2 Soft Chromatic chrom_soft3 (7): Soft chromatic genus is from K. Schlesinger's modified Mixolydian Harmonia cifariello (15): F. Cifariello Ciardi, ICMC 86 Proc. 15-tone 5-limit tuning ckring1 (13): Double-tie circular mirroring with common pivot of 4:5:6:7 = square 1 3 5 7 ckring2 (13): Double-tie circular mirroring with common pivot of 3:5:7:9 clampitt-phi (7): David Clampitt, phi+1 mod 3phi+2, from "Pairwise Well-Formed Scales", 1997 classr (12): Marvel projection to the 5-limit of class cluster (13): 13-tone 5-limit Tritriadic Cluster cluster6a (6): Six-Tone Triadic Cluster 4:5:6 cluster6b (6): Six-Tone Triadic Cluster 4:6:5 cluster6c (6): Six-Tone Triadic Cluster 3:4:5 cluster6d (6): Six-Tone Triadic Cluster 3:5:4 cluster6e (6): Six-Tone Triadic Cluster 5:6:8 cluster6f (6): Six-Tone Triadic Cluster 5:8:6 cluster6g (6): Six-Tone Triadic Cluster 4:5:7 cluster6h (6): Six-Tone Triadic Cluster 4:7:5 cluster6i (6): Six-Tone Triadic Cluster 5:6:7 cluster6j (6): Six-Tone Triadic Cluster 5:7:6 cluster8a (8): Eight-Tone Triadic Cluster 4:5:6 cluster8b (8): Eight-Tone Triadic Cluster 4:6:5 cluster8c (8): Eight-Tone Triadic Cluster 3:4:5 cluster8d (8): Eight-Tone Triadic Cluster 3:5:4 cluster8e (8): Eight-Tone Triadic Cluster 5:6:8 cluster8f (8): Eight-Tone Triadic Cluster 5:8:6 cluster8g (8): Eight-Tone Triadic Cluster 4:5:7 cluster8h (8): Eight-Tone Triadic Cluster 4:7:5 cluster8i (8): Eight-Tone Triadic Cluster 5:6:7 cluster8j (8): Eight-Tone Triadic Cluster 5:7:6 cohenf_11 (11): Flynn Cohen, 7-limit scale of "Rameau's nephew", 1996 coleman (12): Jim Coleman's ModX piano temperament. TL 16 Mar 1999 collengettes (24): R.P. Collengettes, from p.23 of d'Erlanger, vol 5. 24 tone Arabic system colonna1 (12): Colonna 1 colonna2 (12): Colonna 2 concertina (14): English Concertina, Helmholtz/Ellis, p. 470 cons11 (7): Set of intervals with num + den <= 11 not exceeding 2/1 cons12 (8): Set of intervals with num + den <= 12 not exceeding 2/1 cons13 (10): Set of intervals with num + den <= 13 not exceeding 2/1 cons14 (11): Set of intervals with num + den <= 14 not exceeding 2/1 cons15 (12): Set of intervals with num + den <= 15 not exceeding 2/1 cons16 (13): Set of intervals with num + den <= 16 not exceeding 2/1 cons17 (16): Set of intervals with num + den <= 17 not exceeding 2/1 cons18 (17): Set of intervals with num + den <= 18 not exceeding 2/1 cons19 (20): Set of intervals with num + den <= 19 not exceeding 2/1 cons20 (22): Set of intervals with num + den <= 20 not exceeding 2/1 cons21 (24): Set of intervals with num + den <= 21 not exceeding 2/1 cons8 (4): Set of intervals with num + den <= 8 not exceeding 2/1 cons9 (5): Set of intervals with num + den <= 9 not exceeding 2/1 cons_5 (8): Set of consonant 5-limit intervals within the octave cons_7 (10): Set of consonant 7-limit intervals of tetrad 4:5:6:7 and inverse cons_7a (11): Set of consonant 7-limit intervals, harmonic entropy minima cont_frac1 (14): Continued fraction scale 1, see McLaren in Xenharmonikon 15, pp.33-38 cont_frac2 (15): Continued fraction scale 2, see McLaren in Xenharmonikon 15, pp.33-38 cordier (12): Serge Cordier, piano tuning, 1975 (Piano bien tempïrï et justesse orchestrale) corner11 (15): Quadratic Corner 11-limit. Chalmers '96 corner13 (21): Quadratic Corner 13-limit. Chalmers '96 corner17 (28): Quadratic Corner 17-limit. corner17a (42): Quadratic Corner 17 odd limit. corner7 (10): Quadratic corner 7-limit. Chalmers '96 corner9 (14): First 9 harmonics of 5th through 9th harmonics corners11 (29): Quadratic Corners 11-limit. Chalmers '96 corners13 (41): Quadratic Corners 13-limit. Chalmers '96 corners7 (19): Quadratic Corners 7-limit. Chalmers '96 corrette (12): Corrette temperament corrette2 (12): Michel Corrette, modified meantone temperament (1753) coul_12 (12): Scale 1 5/4 3/2 2 successively split largest intervals by smallest interval coul_12a (12): Scale 1 6/5 3/2 2 successively split largest intervals by smallest interval coul_12sup (12): Superparticular approximation to Pythagorean scale. Op de Coul, 2003 coul_13 (13): Symmetrical 13-tone 5-limit just system coul_17sup (17): Superparticular approximation to Pythagorean 17-tone scale. Op de Coul, 2003 coul_20 (20): Tuning for a 3-row symmetrical keyboard, Op de Coul, 1989 coul_27 (27): Symmetrical 27-tone 5-limit just system, 67108864/66430125 and 25/24 counterschismic (53): Counterschismic temperament, g=498.082318, 5-limit couperin (12): Couperin modified meantone cross13 (19): 13-limit harmonic/subharmonic cross cross2 (9): Pusey's double 5-7 cross reduced by 3/1 cross2_5 (9): double 3-5 cross reduced by 2/1 cross2_7 (13): longer 3-5-7 cross reduced by 2/1 cross3 (13): Pusey's triple 5-7 cross reduced by 3/1 cross_7 (7): 3-5-7 cross reduced by 2/1, quasi diatonic, similar to Zalzal's, Flynn Cohen cross_72 (13): double 3-5-7 cross reduced by 2/1 cross_7a (7): 2-5-7 cross reduced by 3/1 cruciform (12): Cruciform Lattice galilei (12): Vincenzo Galilei's approximation gamelan_om (12): Other Music gamelan (7 limit black keys) gamelan_udan (12): Gamelan Udan Mas (approx) s6,p6,p7,s1,p1,s2,p2,p3,s3,p4,s5,p5 ganassi (12): Sylvestro Ganassi's temperament (1543) gann_custer (31): Kyle Gann, scale from Custer's Ghost to Sitting Bull, 1/1=G gann_frac (16): Kyle Gann, scale from Fractured Paradise, 1/1=B gann_ghost (8): Kyle Gann, scale from Ghost Town, 1/1=E gann_super (21): Kyle Gann, scale from Superparticular Woman (1992), 1/1=G gann_things (24): Kyle Gann, scale from How Miraculous Things Happen, 1/1=A garcia (29): Linear 29-tone scale by Josï L. Garcia, 1988 15/13-52/45 alternating garibaldi24 (24): Garibaldi[24] in 94-tET tuning. genovese (65): Denny Genovese's 65-note scale. 3/2=384 Hz genovese_12 (12): Denny Genovese's superposition of harmonics 8-16 and subharmonics 6-12 genovese_38 (38): Denny Genovese's 38-note scale. Harm 1..16 x Subh. 1..12 gf1-2 (16): 16-note scale with all possible quadruplets of 50 & 100 c. Galois Field GF(2) gf2-3 (16): 16-note scale with all possible quadruplets of 60 & 90 c. Galois Field GF(2) gilson7 (12): Gilson septimal gilson7a (12): Gilson septimal 2 golden_10 (10): Golden version of Rapoport's Major 10 out of 13 golden_5 (5): Golden pentatonic gradus10 (27): Intervals > 1 with Gradus = 10 gradus3 (2): Intervals > 1 with Gradus = 3 gradus4 (3): Intervals > 1 with Gradus = 4 gradus5 (5): Intervals > 1 with Gradus = 5 gradus6 (7): Intervals > 1 with Gradus = 6 gradus7 (11): Intervals > 1 with Gradus = 7 gradus8 (15): Intervals > 1 with Gradus = 8 gradus9 (21): Intervals > 1 with Gradus = 9 grady11 (12): Kraig Grady's dual [5 7 9 11] hexany scale grady7 (12): Kraig Grady's 7-limit "Centaur" scale (1987), see Xenharmonikon 16 grady7t (12): Tempered version of grady7 with egalised 225/224 grady_14 (14): Kraig Grady, letter to Lou Harrison, published in 1/1 7 (1) 1991 p 5. grammateus (12): H. Grammateus (Heinrich Schreiber) (1518). B-F# and Bb-F 1/2 P. Also Marpurg temp.nr.6 graupner (12): Johann Gottlieb Graupner's temperament (1819) groenewald_21 (21): Jïrgen Grïnewald, new meantone temperament I (2000) gross (118): Gross temperament, g=91.531021, 5-limit groven (36): Eivind Groven's 36-tone scale with 1/8-schisma temp. fifths and 5/4 (1948) groven_ji (36): Untempered version of Groven's 36-tone scale gumbeng (5): Scale of gumbeng ensemble, Java. 1/1=440 Hz. gunkali (7): Indian mode Gunkali, see Daniïlou: Intr. to the Stud. of Mus. Scales, p.175 gyaling (6): Tibetan Buddhist Gyaling tones measured from CD "The Diamond Path", Ligon 2002 far12_104 (12): Farey approximation to 12-tET with den=104 far12_65 (12): Farey approximation to 12-tET with den=65 far12_80 (12): Farey approximation to 12-tET with den=80 farey3 (5): Farey fractions between 0 and 1 until 3rd level, normalised by 2/1 farey4 (9): Farey fractions between 0 and 1 until 4th level, normalised by 2/1 farey5 (20): Farey fractions between 0 and 1 until 5th level, normalised by 2/1 farnsworth (7): Farnsworth's scale fibo_9 (8): First 9 Fibonacci terms reduced by 2/1, B. McLaren, XH 13, 1991 finnamore (8): David J. Finnamore, Tuning List 9 May '97. Tetrachordal scale, 17/16x19/17x64/57 finnamore53 (16): David J. Finnamore, tuning for "Crawlspace", 53-limit, 1998. finnamore_11 (14): David J. Finnamore, 11-limit scale, Tuning List 3 Sept '98 finnamore_7 (12): David J. Finnamore, TL 1 Sept '98. 7-tone Pyth. with 9/8 div. in 21/20 &15/14 finnamore_7a (12): David J. Finnamore, TL 1 Sept '98. 7-tone Pyth. with 9/8 div. in 15/14 &21/20 finnamore_jc (7): Chalmers' modification of Finnamore. Tuning List 9-5-97 19/18 x 9/8 x 64/57 fisher (12): Alexander Metcalf Fisher's modified meantone temperament (1818) fj-10tet (10): Franck Jedrzejewski continued fractions approx. of 10-tet fj-12tet (12): Franck Jedrzejewski continued fractions approx. of 12-tet fj-13tet (13): Franck Jedrzejewski continued fractions approx. of 13-tet fj-14tet (14): Franck Jedrzejewski continued fractions approx. of 14-tet fj-15tet (15): Franck Jedrzejewski continued fractions approx. of 15-tet fj-16tet (16): Franck Jedrzejewski continued fractions approx. of 16-tet fj-17tet (17): Franck Jedrzejewski continued fractions approx. of 17-tet fj-18tet (18): Franck Jedrzejewski continued fractions approx. of 18-tet fj-19tet (19): Franck Jedrzejewski continued fractions approx. of 19-tet fj-20tet (20): Franck Jedrzejewski continued fractions approx. of 20-tet fj-21tet (21): Franck Jedrzejewski continued fractions approx. of 21-tet fj-22tet (22): Franck Jedrzejewski continued fractions approx. of 22-tet fj-23tet (23): Franck Jedrzejewski continued fractions approx. of 23-tet fj-24tet (24): Franck Jedrzejewski continued fractions approx. of 24-tet fj-26tet (26): Franck Jedrzejewski continued fractions approx. of 26-tet fj-30tet (30): Franck Jedrzejewski continued fractions approx. of 30-tet fj-31tet (31): Franck Jedrzejewski continued fractions approx. of 31-tet fj-36tet (36): Franck Jedrzejewski continued fractions approx. of 36-tet fj-41tet (41): Franck Jedrzejewski continued fractions approx. of 41-tet fj-42tet (42): Franck Jedrzejewski continued fractions approx. of 42-tet fj-43tet (43): Franck Jedrzejewski continued fractions approx. of 43-tet fj-53tet (53): Franck Jedrzejewski continued fractions approx. of 53-tet fj-54tet (54): Franck Jedrzejewski continued fractions approx. of 54-tet fj-55tet (55): Franck Jedrzejewski continued fractions approx. of 55-tet fj-5tet (5): Franck Jedrzejewski continued fractions approx. of 5-tet fj-60tet (60): Franck Jedrzejewski continued fractions approx. of 60-tet fj-66tet (66): Franck Jedrzejewski continued fractions approx. of 66-tet fj-72tet (72): Franck Jedrzejewski continued fractions approx. of 72-tet fj-78tet (78): Franck Jedrzejewski continued fractions approx. of 78-tet fj-7tet (7): Franck Jedrzejewski continued fractions approx. of 7-tet fj-84tet (84): Franck Jedrzejewski continued fractions approx. of 84-tet fj-8tet (8): Franck Jedrzejewski continued fractions approx. of 8-tet fj-90tet (90): Franck Jedrzejewski continued fractions approx. of 90-tet fj-96tet (96): Franck Jedrzejewski continued fractions approx. of 96-tet fj-9tet (9): Franck Jedrzejewski continued fractions approx. of 9-tet flavel (12): Bill Flavel's just tuning. Tuning List 6-5-98 fogliano (14): Fogliano's Monochord with D-/D and Bb-/Bb fogliano1 (12): Fogliano's Monochord no.1, Musica theorica (1529) fogliano2 (12): Fogliano's Monochord no.2 fokker-h (19): Fokker-H 5-limit per.bl. synt.comma&small diesis, KNAW B71, 1968 fokker-ht (19): Tempered version of Fokker-H per.bl. with better 6 tetrads, OdC fokker-k (19): Fokker-K 5-limit per.bl. of 225/224 & 81/80 & 10976/10935, KNAW B71, 1968 fokker-l (19): Fokker-L 7-limit periodicity block 10976/10935 & 225/224 & 15625/15552, 1969 fokker-lt (19): Tempered version of Fokker-L per.bl. with more triads fokker-m (31): Fokker-M 7-limit periodicity block 81/80 & 225/224 & 1029/1024, KNAW B72, 1969 fokker-n (31): Fokker-N 7-limit periodicity block 81/80 & 2100875/2097152 & 1029/1024, 1969 fokker-n2 (31): Fokker-N different block shape fokker-p (31): Fokker-P 7-limit periodicity block 65625/65536 & 6144/6125 & 2401/2400, 1969 fokker-q (53): Fokker-Q 7-limit per.bl. 225/224 & 4000/3969 & 6144/6125, KNAW B72, 1969 fokker-r (53): Fokker-R 7-limit per.bl. 4375/4374 & 65625/65536 & 6144/6125, 1969 fokker-s (53): Fokker-S 7-limit per.bl. 4375/4374 & 323/322 & 64827/65536, 1969 fokker_12 (12): Fokker's 7-limit 12-tone just scale fokker_12a (12): Fokker's 7-limit periodicity block of 2048/2025 & 3969/4000 & 225/224 fokker_12b (12): Fokker's 7-limit semitone scale KNAW B72, 1969 fokker_12c (12): Fokker's 7-limit complementary semitone scale, KNAW B72, 1969 fokker_12t (12): Tempered version of fokker_12 with egalised 225/224, see also lumma fokker_12t2 (12): Another tempered version of fokker_12 with egalised 225/224 fokker_22 (22): Fokker's 22-tone periodicity block of 2048/2025 & 3125/3072. KNAW B71, 1968 fokker_22a (22): Fokker's 22-tone periodicity block of 2048/2025 & 2109375/2097152 = semicomma fokker_31 (31): Fokker's 31-tone just system fokker_31a (31): Fokker's 31-tone first alternate septimal tuning fokker_31b (31): Fokker's 31-tone second alternate septimal tuning fokker_31c (31): Fokker's 31-tone periodicity block of 81/80 & 2109375/2097152 = semicomma fokker_31d (31): Fokker's 31-tone periodicity block of 81/80 & Wïrschmidt's comma fokker_31d2 (31): Reduced version of fokker_31d by Prooijen expressibility fokker_41 (41): Fokker's 7-limit supracomma per.bl. 10976/10935 & 225/224 & 496125/262144 fokker_41a (41): Fokker's 41-tone periodicity block of schisma & 34171875/33554432 fokker_41b (41): Fokker's 41-tone periodicity block of schisma & 3125/3072 fokker_53 (53): Fokker's 53-tone system, degree 37 has alternatives fokker_53a (53): Fokker's 53-tone periodicity block of schisma & kleisma fokker_53b (53): Fokker's 53-tone periodicity block of schisma & 2109375/2097152 fokker_av (31): Fokker's suggestion for a shrinked octave by averaging approximations fokker_bosch (9): Scale of "Naar Den Bosch toe", genus diatonicum cum septimis. 1/1=D fokker_sr (22): Fokker's 7-limit sruti scale, KNAW B72, 1969 fokker_sr2 (22): Fokker's complementary 7-limit sruti scale, KNAW B72, 1969 fokker_sra (22): Two-step approximation 9-13 to Fokker's 7-limit sruti scale fokker_srb (22): Two-step maximally even approximation 11-11 to Fokker's 7-limit sruti scale fokker_uv (70): Table of Unison Vectors, Microsons and Minisons, from article KNAW, 1969 foote (12): Ed Foote, piano temperament. TL 9 Jun 2, almost equal to Coleman forster (32): Cris Forster's Chrysalis tuning, XH 7+8 fortuna11 (12): 11-limit scale from Clem Fortuna fortuna_a1 (12): Clem Fortuna, Arabic mode of 24-tET, try C or G major, superset of Basandida, trivalent fortuna_a2 (12): Clem Fortuna, Arabic mode of 24-tET, try C or F minor fortuna_bag (12): Bagpipe tuning from Fortuna, try key of G with F natural fortuna_eth (12): Ethiopian Tunings from Fortuna fortuna_sheng (12): Sheng scale on naturals starting on d, from Fortuna francis_r12-14p (12): Bach WTC theoretical temperament, 1/14 Pyth. comma, Cornet-ton francis_r12-2 (12): J. Charles Francis, Bach WTC temperament R12-2, fifths beat ratios 0, 1, 2. C=279.331 Cornet-ton francis_r2-1 (12): J. Charles Francis, Bach WTC temperament R2-1, fifths beat ratios 0, 1, 2. C=249.072 Cammerton francis_r2-14p (12): Bach WTC theoretical temperament, 1/14 Pyth. comma, Cammerton francis_seal (12): J. Charles Francis, Bach tuning interpretion as beats/sec. from seal francis_suppig (12): J. Charles Francis, Suppig Calculus musicus, 5ths beat ratios 0, 1, 2. efg333 (4): Genus primum [333] efg333333333337 (24): Genus [333333333337] efg333333355 (24): Genus [333333355] efg33335 (10): Genus [33335] efg3333555 (20): Genus [3333555] efg33335555 (25): Genus bis-ultra-chromaticum [33335555] efg333355577 (60): Genus [333355577] efg33337 (10): Genus [33337] efg3335 (8): Genus diatonicum veterum correctum [3335] efg33355 (12): Genus diatonico-chromaticum hodiernum correctum [33355] efg333555 (16): Genus diatonico-hyperchromaticum [333555] efg33355555 (24): Genus [33355555] efg333555777 (64): Genus [333555777] efg333557 (24): Genus diatonico-enharmonicum [333557] efg33357 (16): Genus diatonico-enharmonicum [33357] efg3335711 (32): Genus [3 3 3 5 7 11], expanded hexany 1 3 5 7 9 11 efg333577 (24): Genus [333577] efg3337 (8): Genus [3337] efg33377 (12): Genus [33377] Bi-enharmonicum simplex efg335 (6): Genus secundum [335] efg3355 (9): Genus chromaticum veterum correctum [3355] efg33555 (12): Genus bichromaticum [33555] efg335555577 (45): Genus [335555577] efg33557 (18): Genus chromatico-enharmonicum [33557] efg335577 (27): Genus chromaticum septimis triplex [335577] efg3357 (12): Genus enharmonicum vocale [3357] efg33577 (18): Genus [33577] efg337 (6): Genus quintum [337] efg3377 (9): Genus [3377] efg33777 (12): Genus [33777] efg33777a (10): Genus [33777] with comma discarded which disappears in 31-tET efg355 (6): Genus tertium [355] efg3555 (8): Genus enharmonicum veterum correctum [3555] efg35555 (10): Genus [35555] efg35557 (16): Genus [35557] efg3557 (12): Genus enharmonicum instrumentale [3557] efg35577 (18): Genus [35577] efg357 (8): Genus sextum [357] & 7-limit Octony, see ch.6 p.118 efg35711 (16): Genus [3 5 7 11] efg3571113 (32): Genus [3 5 7 11 13] efg3577 (12): Genus [3577] efg35777 (16): Genus [35777] efg35777a (14): Genus [35777] with comma discarded which disappears in 31-tET efg377 (6): Genus octavum [377] efg3777 (8): Genus [3777] efg37777 (10): Genus [37777] efg37777a (8): Genus [37777] with comma discarded that disappears in 31-tET efg555 (4): Genus quartum [555] efg55557 (10): Genus [55557] efg5557 (8): Genus [5557] efg55577 (12): Genus [55577] efg557 (6): Genus septimum [557] efg5577 (9): Genus [5577] efg55777 (12): Genus [55777] efg577 (6): Genus nonum [577] efg5777 (8): Genus [5777] efg57777 (10): Genus [57777] efg777 (4): Genus decimum [777] efg77777 (6): Genus [77777] eikohole1 (6): First eikohole ball <6 9 13 17 20|-epimorphic eikohole2 (18): Second eikohole ball eikohole4 (24): Fourth eikohole ball eikohole5 (42): Fifth eikohole ball eikohole6 (54): Sixth eikohole ball eikosany (20): 3)6 1.3.5.7.9.11 Eikosany (1.3.5 tonic) ekring1 (12): Single-tie circular mirroring of 3:4:5 ekring2 (12): Single-tie circular mirroring of 6:7:8 ekring3 (12): Single-tie circular mirroring of 4:5:7 ekring4 (12): Single-tie circular mirroring of 4:5:6 ekring5 (12): Single-tie circular mirroring of 3:5:7 ekring5bp (12): Single-tie BP circular mirroring of 3:5:7 ekring6 (12): Single-tie circular mirroring of 6:7:9 ekring7 (12): Single-tie circular mirroring of 5:7:9 ekring7bp (12): Single-tie BP circular mirroring of 5:7:9 ellis (12): Alexander John Ellis' imitation equal temperament (1875) ellis_24 (24): Ellis, from p.421 of Helmholtz, 24 tones of JI for 1 manual harmonium ellis_eb (12): Ellis' new equal beating temperament for pianofortes (1885) ellis_harm (12): Ellis's Just Harmonium ellis_mteb (12): Ellis' equal beating meantone tuning (1885) enh14 (7): 14/11 Enharmonic enh15 (7): Tonos-15 Enharmonic enh15_inv (7): Inverted Enharmonic Tonos-15 Harmonia enh15_inv2 (7): Inverted harmonic form of the enharmonic Tonos-15 enh17 (7): Tonos-17 Enharmonic enh17_con (7): Conjunct Tonos-17 Enharmonic enh19 (7): Tonos-19 Enharmonic enh19_con (7): Conjunct Tonos-19 Enharmonic enh2 (7): 1:2 Enharmonic. New genus 2 + 4 + 24 parts enh21 (7): Tonos-21 Enharmonic enh21_inv (7): Inverted Enharmonic Tonos-21 Harmonia enh21_inv2 (7): Inverted harmonic form of the enharmonic Tonos-21 enh23 (7): Tonos-23 Enharmonic enh23_con (7): Conjunct Tonos-23 Enharmonic enh25 (7): Tonos-25 Enharmonic enh25_con (7): Conjunct Tonos-25 Enharmonic enh27 (7): Tonos-27 Enharmonic enh27_inv (7): Inverted Enharmonic Tonos-27 Harmonia enh27_inv2 (7): Inverted harmonic form of the enharmonic Tonos-27 enh29 (7): Tonos-29 Enharmonic enh29_con (7): Conjunct Tonos-29 Enharmonic enh31 (8): Tonos-31 Enharmonic. Tone 24 alternates with 23 as MESE or A enh31_con (8): Conjunct Tonos-31 Enharmonic enh33 (7): Tonos-33 Enharmonic enh33_con (7): Conjunct Tonos-33 Enharmonic enh_invcon (7): Inverted Enharmonic Conjunct Phrygian Harmonia enh_mod (7): Enharmonic After Wilson's Purvi Modulations, See page 111 enh_perm (7): Permuted Enharmonic, After Wilson's Marwa Permutations, See page 110. enn45ji (45): Detempered Ennealimma[45], Hahn reduced enn72synch (72): Poptimal synchonized beating ennealimmal tuning, TM 10-10-2005 ennea45 (45): Ennealimmal-45, in a 7-limit least-squares tuning, g=48.999, G.W. Smith epimore_enh (7): New Epimoric Enharmonic, Dorian mode of the 4th new Enharmonic on Hofmann's list eratos_chrom (7): Dorian mode of Eratosthenes's Chromatic. same as Ptol. Intense Chromatic eratos_diat (7): Dorian mode of Eratosthenes's Diatonic, Pythagorean eratos_enh (7): Dorian mode of Eratosthenes's Enharmonic erlangen (12): Anonymus: Pro clavichordiis faciendis, Erlangen 15th century erlangen2 (12): Revised Erlangen erlich1 (10): Asymmetrical Major decatonic mode of 22-tET, Paul Erlich erlich10 (10): Canonical JI interpretation of the Pentachordal decatonic mode of 22-tET erlich10s1 (10): Superparticular version of erlich10 using 50/49 decatonic comma erlich10s2 (10): Other superparticular version of erlich10 using 50/49 decatonic comma erlich11 (10): Canonical JI interpretation of the Symmetrical decatonic mode of 22-tET erlich11s1 (10): Superparticular version of erlich11 using 50/49 decatonic comma erlich11s2 (10): Other superparticular version of erlich11 using 50/49 decatonic comma erlich12 (18): Two 9-tET scales 3/2 shifted, Paul Erlich, TL 5-12-2001 erlich13 (10): Just scale by Paul Erlich (2002) erlich2 (10): Asymmetrical Minor decatonic mode of 22-tET, Paul Erlich erlich3 (10): Symmetrical Major decatonic mode of 22-tET, Paul Erlich erlich4 (10): Symmetrical Minor decatonic mode of 22-tET, Paul Erlich erlich5 (22): Unequal 22-note compromise between decatonic & Indian srutis, Paul Erlich erlich6 (22): Scale of consonant tones against 1/1-3/2 drone. TL 23-9-1998 erlich7 (26): Meantone-like circle of sinuoidally varying fifths, TL 08-12-99 erlich8 (24): Two 12-tET scales 15 cents shifted, Paul Erlich erlich9 (20): 11-limit periodicity block, u.v.: 9801/9800 243/242 126/125 100/99 erlich_bpf (39): Erlich's 39-tone Triple Bohlen-Pierce scale erlich_bpp (39): Periodicity block for erlich_bpf, 1625/1617 1331/1323 275/273 245/243 erlich_bpp2 (39): Improved shape for erlich_bpp erlich_bppe (39): LS optimal 3:5:7:11:13 tempering, virtually equal, g=780.2702 cents erlich_bppm (39): MM optimal 3:5:7:11:13 tempering, g=780.352 cents erlich_paj (22): Erlich's Pajara or Twintone, with RMS optimal generator erlich_paj2 (22): Erlich's Pajara or Twintone with minimax optimal generator escapade (22): Escapade temperament, g=55.275493, 5-limit et-mix6 (12): Mix of equal temperaments from 1-6 (= 4-6) euler (12): Euler's Monochord (a mode of Ellis's duodene) (1739), genus [33355] euler20 (20): Genus [3333555] tempered by 225/224-planar euler24 (24): Genus [33333555] tempered by 225/224-planar euler_diat (8): Euler's genus diatonicum veterum correctum euler_enh (7): Euler's Old Enharmonic, From Tentamen Novae Theoriae Musicae euler_gm (8): Euler's Genus Musicum, Octony based on Archytas's Enharmonic exptriad2 (7): Two times expanded major triad exptriad3 (30): Three times expanded major triad iivv17 (21): 17-limit IIVV indian-ayyar (22): Carnatic sruti system, C.Subrahmanya Ayyar, 1976. alt:21/20 25/16 63/40 40/21 indian-dk (9): Raga Darbari Kanada indian-ellis (22): Ellis's Indian Chromatic, theoretical #74 of App.XX, p.517 of Helmholtz indian-hahn (22): Indian shrutis Paul Hahn proposal indian-hrdaya1 (12): From Hrdayakautaka of Hrdaya Narayana (17th c) Bhatkande's interpretation indian-hrdaya2 (12): From Hrdayakautaka of Hrdaya Narayana (17th c) Levy's interpretation indian-invrot (12): Inverted and rotated North Indian gamut indian-magrama (7): Indian mode Ma-grama (Sa Ri Ga Ma Pa Dha Ni Sa) indian-newbengali (22): Modern Bengali scale,S.M. Tagore: The mus. scales of the Hindus,Calcutta 1884 indian-old2ellis (22): Ellis Old Indian Chrom2, Helmholtz, p. 517. This is a 4 cent appr. to #73 indian-oldellis (22): Ellis Old Indian Chromatic, Helmholtz, p. 517. This is a 0.5 cent appr. to #73 indian-raja (6): A folk scale from Rajasthan, India indian-sagrama (7): Indian mode Sa-grama (Sa Ri Ga Ma Pa Dha Ni Sa), inverse of Didymus' diatonic indian-srutiharm (22): B. Chaitanya Deva's sruti harmonium. The Music of India, 1981, p. 109 indian-srutivina (22): Raja S.M. Tagore's sruti vina, measured by Ellis and Hipkins, 1886. 1/1=241.2 indian-srutivina2 (22): S. Ramanathan's sruti vina, 1973. In B.C. Deva, The Music of India, p. 110 indian-vina (12): Observed South Indian tuning of a vina, Ellis indian-vina2 (24): Observed tuning of old vina in Tanjore Palace, Ellis and Hipkins. 1/1=210.7 Hz indian-vina3 (12): Tuning of K.S. Subramanian's vina (1983) indian (22): Indian shruti scale indian2 (22): Indian shruti scale with tritone 64/45 schisma lower (Mr.Devarajan, Madurai) indian2_sm (22): Shruti/Mathieu's Magic Mode scale in 289-equal (schismic) temperament indian3 (22): Indian shruti scale with 32/31 and 31/16 and tritone schisma lower indian4 (22): Indian shruti scale according to Firoze Framjee: Text book of Indian music indian5 (23): 23 Shrutis, Amit Mitra, 1/1 no. 12:2, Table C. indian6 (77): Shrutis calculated by generation method, Amit Mitra, 1/1 no. 12:2, Table B. indian_12 (12): North Indian Gamut, modern Hindustani gamut out of 22 or more shrutis indian_12c (12): Carnatic gamut. Kuppuswami: Carnatic music and the Tamils, p. v indian_a (7): One observed indian mode indian_b (7): Observed Indian mode indian_c (7): Observed Indian mode indian_d (7): Indian D (Ellis, correct) indian_e (7): Observed Indian mode indian_g (22): Shruti/Mathieu's Magic Mode scale in 94-et (garibaldi) temperament indian_rat (22): Indian Raga, From Fortuna, after Helmholtz, ratios by JC indian_rot (12): Rotated North Indian Gamut ionic (7): Ancient greek Ionic iran_diat (7): Iranian Diatonic from Dariush Anooshfar, Safi-a-ddin Armavi's scale from 125 ET iraq (8): Iraq 8-tone scale, Ellis isfahan_5 (5): Isfahan (IG #2, DF #8), from Rouanet islamic (5): Islamic Genus (DF#7), from Rouanet italian (12): Italian organ temperament, G.C. Klop (1974), 1/12 P.comma, also d'Alembert/Rousseau (1752/67) iter1 (6): McLaren style, IE= 2.414214, PD=5, SD=0 iter10 (17): Iterated 5/2 Scale, IE=5/2, PD=4, SD=3 iter11 (10): Binary 5/3 Scale #2 iter12 (9): Binary 5/3 Scale #4 iter13 (5): Binary 5/3 Scale #6 iter14 (11): Binary Divided 3/1 Scale #2 iter15 (10): Binary Division Scale iter16 (11): Binary Division Scale 4+2 iter17 (17): Binary E Scale #2 iter18 (10): Binary E Scale #4 iter19 (16): Binary Kidjel Ratio scale #2, IE=16/3 iter2 (8): Iterated 1 + SQR(2) Scale, IE=2.414214, PD=5, SD=1 iter20 (11): Binary PHI Scale #2 iter21 (12): Binary PHI Scale 5+2 #2 iter22 (16): Binary PI Scale #2 iter23 (16): Binary SQR(3) Scale #2 iter24 (16): Binary SQR(5) Scale #2 iter25 (16): Binary SQR(7) Scale #2 iter26 (17): E Scale iter27 (16): Iterated Kidjel Ratio Scale, IE=16/3, PD=3, SD=3 iter28 (5): McLaren 3-Division Scale iter29 (7): Iterated Binary Division of the Octave, IE=2, PD=6, SD=0 iter3 (10): Iterated 27/16 Scale, analog of Hexachord, IE=27/16, PD=3, SD=2 iter30 (6): Iterated E-scale, IE= 2.71828, PD=5, SD=0 iter31 (4): Iterated Kidjel Ratio Scale, IE=16/3, PD=3, SD=0 iter32 (9): Iterated PHI scale, IE= 1.61803339, PD=8, SD=0 iter33 (5): Iterated PI Scale, IE= 3.14159, PD=4, SD=0 iter34 (9): Iterated SQR3 Scale, IE= 1.73205, PD=8, SD=0 iter35 (7): Iterated SQR 5 Scale, IE= 2.23607, PD=6, SD=0 iter36 (6): Iterated SQR 7 Scale, IE= 2.64575, PD=5, SD=0 iter37 (10): Iterated 3/2 scale, IE=3/2, PD=3, SD=2 iter4 (17): Iterated 5/2 Scale, IE=5/2, PD=4, SD=3 iter5 (10): Iterated 5/3 Scale, analog of Hexachord, IE=5/3, PD=3, SD=2 iter6 (11): Iterated binary 1+SQR(2) scale, IE= 2.414214, G=2, PD=4, SD=2 iter7 (10): Iterated 27/16 Scale, analog of Hexachord, IE=27/16, PD=3, SD=2 iter8 (9): Iterated 27/16 Scale, analog of Hexachord, IE=27/16, PD=2, SD=2 iter9 (5): Iterated 27/16 Scale, analog of Hexachord, IE=27/16, PD=2, SD=12 ives (7): Charles Ives' stretched major scale, "Scrapbook" pp. 108-110 ives2a (7): Speculation by Joe Monzo for Ives' other stretched scale ives2b (7): Alt. speculation by Joe Monzo for Ives' other stretched scale abell1 (12): Ross Abell's French Baroque Meantone 1, a'=520 abell2 (12): Ross Abell's French Baroque Meantone 2, a'=520 abell3 (12): Ross Abell's French Baroque Meantone 3, a' = 520 abell4 (12): Ross Abell's French Baroque Meantone 4, a'=520 abell5 (12): Ross Abell's French Baroque Meantone 5, a'=520 abell6 (12): Ross Abell's French Baroque Meantone 6, a'=520 abell7 (12): Ross Abell's French Baroque Meantone 7, a'=520 abell8 (12): Ross Abell's French Baroque Meantone 8, a'=520 abell9 (12): Ross Abell's French Baroque Meantone 9, a'=520 ad-dik (24): Amin Ad-Dik, d'Erlanger, vol 5, p.42 adjeng (5): Soeroepan adjeng aeolic (7): Ancient Greek Aeolic, also tritriadic scale of the 54:64:81 triad agricola (12): Agricola's Monochord, Rudimenta musices (1539) al-din (35): Safi al-Din's complete lute tuning on 5 strings 4/3 apart al-din_19 (19): Arabic scale by Safi al-Din al-farabi (7): Al-Farabi Syn Chrom al-farabi_19 (19): Arabic scale by Al Farabi al-farabi_22 (22): Al-Farabi 22 note ud scale al-farabi_9 (9): Al-Farabi 9 note ud scale al-farabi_blue (7): Another tuning from Al Farabi, c700 AD al-farabi_chrom (7): Al Farabi's Chromatic c700 AD al-farabi_chrom2 (7): Al-Farabi's Chromatic permuted al-farabi_diat (7): Al-Farabi's Diatonic al-farabi_diat2 (7): Old Phrygian, permuted form of Al-Farabi's reduplicated 10/9 diatonic genus, same as ptolemy_diat al-farabi_div (10): Al Farabi's 10 intervals for the division of the tetrachord al-farabi_div2 (12): Al-Farabi's tetrachord division, incl. extra 2187/2048 & 19683/16384 al-farabi_divo (24): Al Farabi's theoretical octave division with identical tetrachords, 10th c. al-farabi_dor (7): Dorian mode of Al-Farabi's 10/9 Diatonic al-farabi_dor2 (7): Dorian mode of Al-Farabi's Diatonic al-farabi_g1 (7): Al-Farabi's Greek genus conjunctum medium, Land al-farabi_g10 (7): Al-Farabi's Greek genus chromaticum forte al-farabi_g11 (7): Al-Farabi's Greek genus chromaticum mollissimum al-farabi_g12 (7): Al-Farabi's Greek genus mollissimum ordinantium al-farabi_g3 (7): Al-Farabi's Greek genus conjunctum primum al-farabi_g4 (7): Al-Farabi's Greek genus forte duplicatum primum al-farabi_g5 (7): Al-Farabi's Greek genus conjunctum tertium, or forte aequatum al-farabi_g6 (7): Al-Farabi's Greek genus forte disjunctum primum al-farabi_g7 (7): Al-Farabi's Greek genus non continuum acre al-farabi_g8 (7): Al-Farabi's Greek genus non continuum mediocre al-farabi_g9 (7): Al-Farabi's Greek genus non continuum laxum al-hwarizmi (6): Al-Hwarizmi's tetrachord division al-kindi (6): Al-Kindi's tetrachord division al-kindi2 (14): Arabic mode by al-Kindi al-mausili (11): Arabic mode by Ishaq al-Mausili, ? - 850 AD albion (12): Terry Riley's Harp of New Albion scale, inverse Malcolm's Monochord, 1/1 on C# alembert (12): Jean-Le Rond d'Alembert modified meantone (1752) alembert2 (12): d'Alembert (?) alves (13): Bill Alves, tuning for "Instantaneous Motion", 1/1 vol. 6/3 alves_22 (22): 11-limit rational interpretation of 22-tET, Bill Alves, tuning list 9-1-98 amity (39): Amity temperament, g=339.508826, 5-limit angklung (8): Scale of an anklung set from Tasikmalaya. 1/1=174 Hz appunn (36): Probable tuning of A. Appunn's 36-tone harmonium w. 3 manuals 80/81 apart,1887 arabic (17): Arabic 17-tone Pythagorean mode, Safi al-Din arabic_s (17): Schimatically altered Arabic 17-tone Pythagorean mode arch_chrom (7): Archytas' Chromatic arch_chromc2 (14): Product set of 2 of Archytas' Chromatic arch_dor (8): Dorian mode of Archytas' Chromatic with added 16/9 arch_enh (7): Archytas' Enharmonic arch_enh2 (8): Archytas' Enharmonic with added 16/9 arch_enh3 (7): Complex 9 of p. 113 based on Archytas's Enharmonic arch_enhp (7): Permutation of Archytas's Enharmonic with the 36/35 first arch_enht (7): Complex 6 of p. 113 based on Archytas's Enharmonic arch_enht2 (7): Complex 5 of p. 113 based on Archytas's Enharmonic arch_enht3 (7): Complex 1 of p. 113 based on Archytas's Enharmonic arch_enht4 (7): Complex 8 of p. 113 based on Archytas's Enharmonic arch_enht5 (7): Complex 10 of p. 113 based on Archytas's Enharmonic arch_enht6 (7): Complex 2 of p. 113 based on Archytas's Enharmonic arch_enht7 (7): Complex 11 of p. 113 based on Archytas's Enharmonic arch_mult (12): Multiple Archytas arch_ptol (12): Archytas/Ptolemy Hybrid 1 arch_ptol2 (12): Archytas/Ptolemy Hybrid 2 arch_sept (12): Archytas Septimal ariel1 (12): Ariel 1 ariel2 (12): Ariel 2 ariel3 (12): Ariel's 12-tone JI scale ariel_19 (19): Ariel 19-tone scale ariel_31 (31): Ariel's 31-tone system arist_archenh (7): PsAristo Arch. Enharmonic, 4 + 3 + 23 parts, similar to Archytas' enharmonic arist_chrom (7): Dorian, Neo-Chromatic,6+18+6 parts = Athanasopoulos' Byzant.liturg. 2nd chromatic arist_chrom2 (7): Dorian Mode, a 1:2 Chromatic, 8 + 18 + 4 parts arist_chrom3 (7): PsAristo 3 Chromatic, 7 + 7 + 16 parts arist_chrom4 (7): PsAristo Chromatic, 5.5 + 5.5 + 19 parts arist_chromenh (7): Aristoxenos' Chromatic/Enharmonic, 3 + 9 + 18 parts arist_chrominv (7): Aristoxenos' Inverted Chromatic, Dorian mode, 18 + 6 + 6 parts arist_chromrej (7): Aristoxenos Rejected Chromatic, 6 + 3 + 21 parts arist_chromunm (7): Unmelodic Chromatic, genus of Aristoxenos, Dorian Mode, 4.5 + 3.5 + 22 parts arist_diat (7): Phrygian octave species on E, 12 + 6 + 12 parts arist_diat2 (7): PsAristo 2 Diatonic, 7 + 11 + 12 parts arist_diat3 (7): PsAristo Diat 3, 9.5 + 9.5 + 11 parts arist_diat4 (7): PsAristo Diatonic, 8 + 8 + 14 parts arist_diatdor (7): PsAristo Redup. Diatonic, 14 + 2 + 14 parts arist_diatinv (7): Lydian octave species on E, major mode, 12 + 12 + 6 parts arist_diatred (7): Aristo Redup. Diatonic, Dorian Mode, 14 + 14 + 2 parts arist_diatred2 (7): PsAristo 2 Redup. Diatonic 2, 4 + 13 + 13 parts arist_diatred3 (7): PsAristo 3 Redup. Diatonic, 8 + 11 + 11 parts arist_enh (7): Aristoxenos' Enharmonion, Dorian mode arist_enh2 (7): PsAristo 2 Enharmonic, 3.5 + 3.5 + 23 parts arist_enh3 (7): PsAristo Enharmonic, 2.5 + 2.5 + 25 parts arist_hemchrom (7): Aristoxenos's Chromatic Hemiolion, Dorian Mode arist_hemchrom2 (7): PsAristo C/H Chromatic, 4.5 + 7.5 + 18 parts arist_hemchrom3 (7): Dorian mode of Aristoxenos' Hemiolic Chromatic according to Ptolemy's interpret arist_hypenh2 (7): PsAristo 2nd Hyperenharmonic, 37.5 + 37.5 + 425 cents arist_hypenh3 (7): PsAristo 3 Hyperenharmonic, 1.5 + 1.5 + 27 parts arist_hypenh4 (7): PsAristo 4 Hyperenharmonic, 2 + 2 + 26 parts arist_hypenh5 (7): PsAristo Hyperenharmonic, 23 + 23 + 454 cents arist_intdiat (7): Dorian mode of Aristoxenos's Intense Diatonic according to Ptolemy arist_penh2 (7): Permuted Aristoxenos's Enharmonion, 3 + 24 + 3 parts arist_penh3 (7): Permuted Aristoxenos's Enharmonion, 24 + 3 + 3 parts arist_pschrom2 (7): PsAristo 2 Chromatic, 6.5 + 6.5 + 17 parts arist_softchrom (7): Aristoxenos's Chromatic Malakon, Dorian Mode arist_softchrom2 (7): Aristoxenos' Soft Chromatic, 6 + 16.5 + 9.5 parts arist_softchrom3 (7): Aristoxenos's Chromatic Malakon, 9.5 + 16.5 + 6 parts arist_softchrom4 (7): PsAristo S. Chromatic, 6 + 7.5 + 16.5 parts arist_softchrom5 (7): Dorian mode of Aristoxenos' Soft Chromatic according to Ptolemy's interpretati arist_softdiat (7): Aristoxenos's Diatonon Malakon, Dorian Mode arist_softdiat2 (7): Dorian Mode, 6 + 15 + 9 parts arist_softdiat3 (7): Dorian Mode, 9 + 15 + 6 parts arist_softdiat4 (7): Dorian Mode, 9 + 6 + 15 parts arist_softdiat5 (7): Dorian Mode, 15 + 6 + 9 parts arist_softdiat6 (7): Dorian Mode, 15 + 9 + 6 parts arist_softdiat7 (7): Dorian mode of Aristoxenos's Soft Diatonic according to Ptolemy arist_synchrom (7): Aristoxenos's Chromatic Syntonon, Dorian Mode arist_syndiat (7): Aristoxenos's Diatonon Syntonon, Dorian Mode arist_unchrom (7): Aristoxenos's Unnamed Chromatic, Dorian Mode, 4 + 8 + 18 parts arist_unchrom2 (7): Dorian Mode, a 1:2 Chromatic, 8 + 4 + 18 parts arist_unchrom3 (7): Dorian Mode, a 1:2 Chromatic, 18 + 4 + 8 parts arist_unchrom4 (7): Dorian Mode, a 1:2 Chromatic, 18 + 8 + 4 parts arith13 (12): The first 13 terms of the arithmetic series, octave reduced arith22 (19): The first 22 terms of the arithmetic series, octave reduced arnautoff_21 (21): Philip Arnautoff, transposed Archytas enharmonic (2005), 1/1 vol 12/1 aron-neidhardt (12): Aron-Neidhardt equal beating well temperament art_nam (9): Artificial Nam System artusi (12): Lute tuning of Giovanni Maria Artusi (1603). 1/4-comma w. acc. 1/2-way naturals astro (118): Astro temperament, g=132.194511, 5-limit athan_chrom (7): Athanasopoulos's Byzantine Liturgical mode Chromatic auftetf (8): 5/4 C.I. again augmented (6): Augmented temperament, g=91.2, oct=1/3, 5-limit augteta (8): Linear Division of the 11/8, duplicated on the 16/11 augteta2 (8): Linear Division of the 7/5, duplicated on the 10/7 augtetb (8): Harmonic mean division of 11/8 augtetc (8): 11/10 C.I. augtetd (8): 11/9 C.I. augtete (8): 5/4 C.I. augtetg (8): 9/8 C.I. augteth (8): 9/8 C.I. A gapped version of this scale is called AugTetI augtetj (6): 9/8 C.I. comprised of 11:10:9:8 subharmonic series on 1 and 8:9:10:11 on 16/11 augtetk (6): 9/8 C.I. This is the converse form of AugTetJ augtetl (6): 9/8 C.I. This is the harmonic form of AugTetI avg_bac (7): Average Bac System avicenna (7): Soft diatonic of Avicenna (Ibn Sina) avicenna_17 (17): Tuning by Avicenna (Ibn Sina), Ahmed Mahmud Hifni, Cairo, 1977 avicenna_19 (19): Arabic scale by Ibn Sina avicenna_chrom (7): Dorian mode a chromatic genus of Avicenna avicenna_chrom2 (7): Dorian Mode, a 1:2 Chromatic, 4 + 18 + 8 parts avicenna_chrom3 (7): Avicenna's Chromatic permuted avicenna_diat (7): Dorian mode a soft diatonic genus of Avicenna avicenna_diff (12): Difference tones of Avicenna's Soft diatonic reduced by 2/1 avicenna_enh (7): Dorian mode of Avicenna's (Ibn Sina) Enharmonic genus awad (24): d'Erlanger vol.5, p.37, after Mans.ur 'Awad awraamoff (12): Awraamoff Septimal Just ayers (36): Lydia Ayers, algorithmic composition, subharmonics 1-37 ayers_19 (19): Scale for NINETEEN, for 19 for the 90's CD. Repeats at 37/19 (or 2/1) ayers_ap (5): Lydia Ayers' Appetizer, ICMC 96, Balinese Slendro from Singaraja, ayers_me (9): Scale for Merapi (1996), Lydia Ayers. Slendro 0 2 4 5 7 9, Pelog 0 1 3 6 8 9 h10_27 (10): 10-tET harmonic approximation, fundamental=27 h12_24 (12): 12-tET harmonic approximation, fundamental=24 h14_27 (14): 14-tET harmonic approximation, fundamental=27 h15_24 (15): 15-tET harmonic approximation, fundamental=24 hahn9 (9): Paul Hahn's just version of 9 out of 31 scale. TL 6-8-'98 hahn_7 (12): Paul Hahn's scale with 32 consonant 7-limit dyads. TL '99, see also smithgw_hahn12 hahn_g (12): fourth of sqrt(2)-1 octave "recursive" meantone, Paul Hahn hahnmaxr (12): Paul Hahn's hahn_7 marvel projected to the 5-limit halfefg357777 (10): Half genus [357777] hamilton (12): Elsie Hamilton's gamut, from article The Modes of Ancient Greek Music (1953) hamilton_jc (12): Chalmers' permutation of Hamilton's gamut. Diatonic notes on white hamilton_jc2 (12): EH gamut, diatonic notes on white and drops 17 for 25. JC Dorian Harmonia on C hammond (13): Hammond organ pitch wheel ratios, 1/1=320 Hz. Do "del 0" to get 12-tone scale hammond12 (12): Hammond organ scale, 1/1=277.0731707 Hz, A=440, see hammond for the ratios handblue (12): "Handy Blues" of Pitch Palette, 7-limit handel (12): Well temperament according to Georg Friedrich Hïndel's rules (c. 1780) hanson_19 (19): JI version of Hanson's 19 out of 53-tET scale harm-doreninv1 (7): 1st Inverted Schlesinger's Enharmonic Dorian Harmonia harm-dorinv1 (7): 1st Inverted Schlesinger's Chromatic Dorian Harmonia harm-lydchrinv1 (7): 1st Inverted Schlesinger's Chromatic Lydian Harmonia harm-lydeninv1 (7): 1st Inverted Schlesinger's Enharmonic Lydian Harmonia harm-mixochrinv1 (7): 1st Inverted Schlesinger's Chromatic Mixolydian Harmonia harm-mixoeninv1 (7): 1st Inverted Schlesinger's Enharmonic Mixolydian Harmonia harm10 (13): 6/7/8/9/10 harmonics harm11s (19): Harm. 1/4-11/4 and subh. 4/1-4/11. Joseph Pehrson 1999 harm12s (11): Harmonics 1 to 12 and subharmonics mixed harm15-30 (12): Harmonics 15 to 30 harm15 (15): Fifth octave of the harmonic overtone series harm16-32 (16): Harmonics 16-32 & Tom Stone's Guitar Scale harm16 (30): First 16 harmonics and subharmonics harm1c-dorian (7): Harm1C-Dorian harm1c-hypod (8): HarmC-Hypodorian harm1c-hypol (8): HarmC-Hypolydian harm1c-lydian (8): Harm1C-Lydian harm1c-mix (7): Harm1C-Con Mixolydian harm1c-mixolydian (7): Harm1C-Mixolydian harm24 (12): Harmonics 12 to 24 harm24_2 (12): Harmonics 12 to 24, mode 9 harm3 (3): Third octave of the harmonic overtone series harm30-60 (30): Harmonics 30-60 harm30 (59): First 30 harmonics and subharmonics harm32-64 (32): Harmonics 32-64 harm37odd (19): Odd harmonics until 37 harm4 (7): Fourth octave of the harmonic overtone series harm6-12 (20): First 12 harmonics of 6th through 12th harmonics harm6 (6): Harmonics 6-12 harm60-30 (12): Harmonics 60 to 30 (Perkis) harm7lim (47): 7-limit harmonics harm8 (8): Harmonics 8-16 harm9 (10): 6/7/8/9 harmonics, First 9 overtones of 5th through 9th harmonics harm_bastard (7): Schlesinger's "Bastard" Hypodorian Harmonia & inverse 1)7 from 1.3.5.7.9.11.13 harm_bastinv (7): Inverse Schlesinger's "Bastard" Hypodorian Harmonia & 1)7 from 1.3.5.7.9.11.13 harm_darreg (24): Darreg Harmonics 4-15 harm_mean (9): Harm. Mean 9-tonic 8/7 is HM of 1/1 and 4/3, etc. harmc-hypop (9): HarmC-Hypophrygian harmd-15 (7): HarmD-15-Harmonia harmd-conmix (7): HarmD-ConMixolydian harmd-hypod (9): HarmD-Hypodorian harmd-hypol (8): HarmD-Hypolydian harmd-hypop (9): HarmD-Hypophrygian harmd-lyd (9): HarmD-Lydian harmd-mix (7): HarmD-Mixolydian. Harmonics 7-14 harmd-phr (12): HarmD-Phryg (with 5 extra tones) harme-hypod (8): HarmE-Hypodorian harme-hypol (8): HarmE-Hypolydian harme-hypop (9): HarmE-Hypophrygian harmjc-15 (12): Rationalized JC Sub-15 Harmonia on C. MD=15, No planetary assignment. harmjc-17-2 (12): Rationalized JC Sub-17 Harmonia on C. MD=17, No planetary assignment. harmjc-17 (12): Rationalized JC Sub-17 Harmonia on C. MD=17, No planetary assignment. harmjc-19-2 (12): Rationalized JC Sub-19 Harmonia on C. MD=19, No planetary assignment. harmjc-19 (12): Rationalized JC Sub-19 Harmonia on C. MD=19, No planetary assignment. harmjc-21 (12): Rationalized JC Sub-21 Harmonia on C. MD=21, No planetary assignment. harmjc-23-2 (12): Rationalized JC Sub-23 Harmonia on C. MD=23, No planetary assignment. harmjc-23 (12): Rationalized JC Sub-23 Harmonia on C. MD=23, No planetary assignment. harmjc-25 (12): Rationalized JC Sub-25 Harmonia on C. MD=25, No planetary assignment. harmjc-27 (12): Rationalized JC Sub-27 Harmonia on C. MD=27, No planetary assignment. harmjc-hypod16 (12): Rationalized JC Hypodorian Harmonia on C. Saturn Scale on C, MD=16. (Steiner) harmjc-hypol20 (12): Rationalized JC Hypolydian Harmonia on C. Mars scale on C., MD=20 harmjc-hypop18 (12): Rationalized JC Hypophrygian Harmonia on C. Jupiter scale on C, MD =18 harmjc-lydian13 (12): Rationalized JC Lydian Harmonia on C. Mercury scale on C, MD = 26 or 13 harmjc-mix14 (12): Rationalized JC Mixolydian Harmonia on C. Moon Scale on C, MD = 14 harmjc-phryg12 (12): Rationalized JC Phrygian Harmonia on C. Venus scale on C, MD = 24 or 12 harmonical (12): See pp 17 and 466-468 Helmholtz. lower 4 oct. Instr. designed & tuned by Ellis harmonical_up (12): Upper 2 octaves of Ellis's Harmonical harmsub16 (12): 16 harmonics on 1/1 and 16 subharmonics on 15/8 harrison_16 (16): Lou Harrison 16-tone superparticular "Ptolemy Duple" harrison_5 (5): From Lou Harrison, a pelog style pentatonic harrison_5_1 (5): From Lou Harrison, a pelog style pentatonic harrison_5_3 (5): From Lou Harrison, a pelog style pentatonic harrison_5_4 (5): From Lou Harrison, a pelog style pentatonic harrison_8 (8): Lou Harrison 8-tone tuning for "Serenade for Guitar" harrison_cinna (12): Lou Harrison, "Incidental Music for Corneille's Cinna" (1955-56) 1/1=C harrison_diat (7): From Lou Harrison, a soft diatonic harrison_joy (6): Lou Harrison's Joyous 6 harrison_mid (7): Lou Harrison mid mode harrison_mid2 (7): Lou Harrison mid mode 2 harrison_min (5): From Lou Harrison, a symmetrical pentatonic with minor thirds harrison_mix1 (5): A "mixed type" pentatonic, Lou Harrison harrison_mix2 (5): A "mixed type" pentatonic, Lou Harrison harrison_mix3 (5): A "mixed type" pentatonic, Lou Harrison harrison_mix4 (5): A "mixed type" pentatonic, Lou Harrison harrison_songs (12): Shared gamut of "Four Strict Songs" (1951-55), each pentatonic harrisonj (12): John Harrison's temperament (1775), almost 3/10-comma. Third = 1200/pi harrisonm_rev (12): Michael Harrison, piano tuning for "Revelation" (2001), 1/1=F haverstick13 (13): Neil Haverstick, scale in 34-tET, MMM 21-5-2006 hawkes (12): William Hawkes' modified 1/5-comma meantone (1807) hawkes2 (12): Meantone with fifth tempered 1/6 of 53-tET step by William Hawkes (1808) hawkes3 (12): William Hawkes' modified 1/5-comma meantone (1811) hbarnes (12): Variation on Barnes with 1/6P -> 1/8P. OdC '99 hebdome1 (58): Wilson 1.3.5.7.9.11.13.15 hebdomekontany, 1.3.5.7 tonic helmholtz (7): Helmholtz's Chromatic scale and Gipsy major from Slovakia helmholtz_24 (24): Simplified Helmholtz 24 helmholtz_hd (9): Helmholtz Harmonic Decad helmholtz_pure (24): Helmholtz's two-keyboard harmonium tuning untempered helmholtz_temp (24): Helmholtz's two-keyboard harmonium tuning hem_chrom (7): Hemiolic Chromatic genus has the strong or 1:2 division of the 12/11 pyknon hem_chrom11 (7): 11'al Hemiolic Chromatic genus with a CI of 11/9, Winnington-Ingram hem_chrom13 (7): 13'al Hemiolic Chromatic or neutral-third genus has a CI of 16/13 hem_chrom2 (7): 1:2 Hemiolic Chromatic genus 3 + 6 + 21 parts hemiwuer24 (24): Hemiwïrschmidt[24] in 229-tET tuning. hen12 (12): Adjusted Hahn12 hen22 (22): Adjusted Hahn22 hept_diamond (25): Inverted-Prime Heptatonic Diamond based on Archytas's Enharmonic hept_diamondi (25): Prime-Inverted Heptatonic Diamond based on Archytas's Enharmonic hept_diamondp (27): Heptatonic Diamond based on Archytas's Enharmonic, 27 tones herf (14): Sims:Reflections on This and That, 1991. Used by Herf in Ekmelischer Gesang heun (12): Well temperament for organ of Jan Heun (1805), subset of 55-tET hexagonal13 (13): Star hexagonal 13-tone scale hexagonal37 (37): Star hexagonal 37-tone scale hexany1 (6): Two out of 1 3 5 7 hexany on 1.3 hexany10 (6): 1.3.5.9 Hexany hexany11 (6): 1.3.7.9 Hexany on 1.3 hexany12 (6): 3.5.7.9 Hexany on 3.9 hexany13 (6): 1.3.5.11 Hexany on 1.11 hexany14 (6): 5.11.13.15 Hexany (5.15), used in The Giving, by Stephen J. Taylor hexany15 (5): 1.3.5.15 2)4 hexany (1.15 tonic) degenerate, symmetrical pentatonic hexany16 (5): 1.3.9.27 Hexany, a degenerate pentatonic form hexany17 (5): 1.5.25.125 Hexany, a degenerate pentatonic form hexany18 (5): 1.7.49.343 Hexany, a degenerate pentatonic form hexany19 (5): 1.5.7.35 Hexany, a degenerate pentatonic form hexany2 (12): Hexany Cluster 2 hexany20 (6): 3.5.7.105 Hexany hexany21 (6): 3.5.9.135 Hexany hexany21a (7): 3.5.9.135 Hexany + 4/3. Is Didymos Diatonic tetrachord on 1/1 and inv. on 3/2 hexany22 (5): 1.11.121.1331 Hexany, a degenerate pentatonic form hexany23 (5): 1.3.11.33 Hexany, degenerate pentatonic form hexany24 (5): 1.5.11.55 Hexany, a degenerate pentatonic form hexany25 (5): 1.7.11.77 Hexany, a degenerate pentatonic form hexany26 (5): 1.9.11.99 Hexany, a degenerate pentatonic form hexany3 (12): Hexany Cluster 3 hexany4 (12): Hexany Cluster 4 hexany49 (6): 1.3.21.49 2)4 hexany (1.21 tonic) hexany5 (12): Hexany Cluster 5 hexany6 (12): Hexany Cluster 6 hexany7 (12): Hexany Cluster 7 hexany8 (12): Hexany Cluster 8 hexany9 (6): 1.3.5.7 Hexany on 5.7 hexany_cl (12): Hexany Cluster 1 hexany_cl2 (11): Composed of 1.3.5.45, 1.3.5.75, 1.3.5.9, and 1.3.5.25 hexanies hexany_flank (12): Hexany Flanker, 7-limit, from Wilson hexany_tetr (6): Complex 12 of p. 115, a hexany based on Archytas's Enharmonic hexany_trans (6): Complex 1 of p. 115, a hexany based on Archytas's Enharmonic hexany_trans2 (6): Complex 2 of p. 115, a hexany based on Archytas's Enharmonic hexany_trans3 (6): Complex 9 of p. 115, a hexany based on Archytas's Enharmonic hexany_u2 (25): Hexany union = genus [335577] minus two corners hexany_union (19): The union of all of the pitches of the 1.3.5.7 hexany on each tone as 1/1 hexany_urot (24): Aggregate rotations of 1.3.5.7 hexany, 1.3 = 1/1 hexanys (12): Hexanys 1 3 5 7 9 hexanys2 (12): Hexanys 1 3 7 11 13 higgs (7): From Greg Higgs announcement of the formation of an Internet Tuning list hinsz_gr (12): Reconstructed Hinsz temperament, organ Pelstergasthuiskerk Groningen. Ortgies,2002 hipkins (7): Hipkins' Chromatic hirajoshi (5): Observed Japanese pentatonic koto scale. Helmholtz/Ellis p.519, nr.112 hirajoshi2 (5): Japanese pentatonic koto scale, theoretical. Helmholz/Ellis p.519, nr.110 hirajoshi3 (5): Observed Japanese pentatonic koto scale. Helmholtz/Ellis p.519, nr.111 hirashima (12): Tatsushi Hirashima, temperament of chapel organ of Kobe Shoin Women's Univ. hjelmboogie (10): Paul Hjelmstad's "Boogie Woogie" scale, TL 20-3-2006 ho_mai_nhi (5): Ho Mai Nhi (Nam Hue) dan tranh scale, Vietnam hochgartz (12): Michael Hochgartz, modified 1/5-comma meantone temperament hofmann1 (7): Hofmann's Enharmonic #1, Dorian mode hofmann2 (7): Hofmann's Enharmonic #2, Dorian mode hofmann_chrom (7): Hofmann's Chromatic holder (12): William Holder's equal beating meantone temperament (1694). 3/2 beats 2.8 Hz holder2 (12): Holder's irregular e.b. temperament with improved Eb and G# hummel (12): Johann Nepomuk Hummel's quasi-equal temperament (1829) hummel2 (12): Johann Nepomuk Hummel's temperament according to the second bearing plan husmann (6): Tetrachord division according to Husmann hwerck3 (12): Variation on Werckmeister III with 1/4P -> 1/6P and 0P -> 1/24P. OdC '99 hyper_enh (7): 13/10 HyperEnharmonic. This genus is at the limit of usable tunings hyper_enh2 (7): Hyperenharmonic genus from Kathleen Schlesinger's enharmonic Phrygian Harmonia hypo_chrom (12): Hypolydian Chromatic Tonos hypo_diat (12): Hypolydian Diatonic Tonos hypo_enh (12): Hypolydian Enharmonic Tonos hypod_chrom (12): Hypodorian Chromatic Tonos hypod_chrom2 (7): Schlesinger's Chromatic Hypodorian Harmonia hypod_chrom2inv (7): Inverted Schlesinger's Chromatic Hypodorian Harmonia hypod_chromenh (7): Schlesinger's Hypodorian Harmonia in a mixed chromatic-enharmonic genus hypod_chrominv (7): A harmonic form of Schlesinger's Chromatic Hypodorian Inverted hypod_diat (12): Hypodorian Diatonic Tonos hypod_diat2 (8): Schlesinger's Hypodorian Harmonia, a subharmonic series through 13 from 16 hypod_diatcon (7): A Hypodorian Diatonic with its own trite synemmenon replacing paramese hypod_diatinv (9): Inverted Schlesinger's Hypodorian Harmonia, a harmonic series from 8 from 16 hypod_enh (12): Hypodorian Enharmonic Tonos hypod_enhinv (7): Inverted Schlesinger's Enharmonic Hypodorian Harmonia hypod_enhinv2 (7): A harmonic form of Schlesinger's Hypodorian enharmonic inverted hypodorian_pis (15): Diatonic Perfect Immutable System in the Hypodorian Tonos hypol_chrom (8): Schlesinger's Hypolydian Harmonia in the chromatic genus hypol_chrominv (8): Inverted Schlesinger's Chromatic Hypolydian Harmonia hypol_chrominv2 (7): harmonic form of Schlesinger's Chromatic Hypolydian inverted hypol_chrominv3 (7): A harmonic form of Schlesinger's Chromatic Hypolydian inverted hypol_diat (8): Schlesinger's Hypolydian Harmonia, a subharmonic series through 13 from 20 hypol_diatcon (7): A Hypolydian Diatonic with its own trite synemmenon replacing paramese hypol_diatinv (8): Inverted Schlesinger's Hypolydian Harmonia, a harmonic series from 10 from 20 hypol_enh (8): Schlesinger's Hypolydian Harmonia in the enharmonic genus hypol_enhinv (8): Inverted Schlesinger's Enharmonic Hypolydian Harmonia hypol_enhinv2 (7): A harmonic form of Schlesinger's Hypolydian enharmonic inverted hypol_enhinv3 (7): A harmonic form of Schlesinger's Hypolydian enharmonic inverted hypol_pent (8): Schlesinger's Hypolydian Harmonia in the pentachromatic genus hypol_tri (8): Schlesinger's Hypolydian Harmonia in the first trichromatic genus hypol_tri2 (8): Schlesinger's Hypolydian Harmonia in the second trichromatic genus hypolydian_pis (15): The Diatonic Perfect Immutable System in the Hypolydian Tonos hypop_chrom (12): Hypophrygian Chromatic Tonos hypop_chromenh (7): Schlesinger's Hypophrygian Harmonia in a mixed chromatic-enharmonic genus hypop_chrominv (7): Inverted Schlesinger's Chromatic Hypophrygian Harmonia hypop_chrominv2 (7): A harmonic form of Schlesinger's Chromatic Hypophrygian inverted hypop_diat (12): Hypophrygian Diatonic Tonos hypop_diat2 (8): Schlesinger's Hypophrygian Harmonia hypop_diat2inv (8): Inverted Schlesinger's Hypophrygian Harmonia, a harmonic series from 9 from 18 hypop_diatcon (7): A Hypophrygian Diatonic with its own trite synemmenon replacing paramese hypop_enh (12): Hypophrygian Enharmonic Tonos hypop_enhinv (7): Inverted Schlesinger's Enharmonic Hypophrygian Harmonia hypop_enhinv2 (7): A harmonic form of Schlesinger's Hypophrygian enharmonic inverted hypophryg_pis (15): The Diatonic Perfect Immutable System in the Hypophrygian Tonos kanzelmeyer_11 (11): Bruce Kanzelmeyer, 11 harmonics from 16 to 32. Base 388.3614815 Hz kanzelmeyer_18 (18): Bruce Kanzelmeyer, 18 harmonics from 32 to 64. Base 388.3614815 Hz kayolonian (19): 19-tone 5-limit scale of the Kayenian Imperium on Kayolonia (reeks van Sjauriek) kayolonian_12 (12): See Barnard: De Keiaanse Muziek, p. 11. (uitgebreide reeks) kayolonian_40 (40): See Barnard: De Keiaanse Muziek kayolonian_f (9): Kayolonian scale F and periodicity block (128/125, 16875/16384) kayolonian_p (9): Kayolonian scale P kayolonian_s (9): Kayolonian scale S kayolonian_t (9): Kayolonian scale T kayolonian_z (9): Kayolonian scale Z kayoloniana (19): Amendment by Rasch of Kayolonian scale's note 9 kebyar-b (5): Gamelan Kebyar tuning begbeg, Andrew Toth, 1993 kebyar-s (5): Gamelan kebyar tuning sedung, Andrew Toth, 1993 kebyar-t (5): Gamelan kebyar tuning tirus, Andrew Toth, 1993 keenan (12): Dave Keenan 31-ET mode has 3 4:5:6:7 tetrads + 3 inv. is Fokker's 12-tone mode keenan2 (12): Dave Keenan strange 9-limit temperament TL 19-11-98 keenan3 (11): Chain of 1/6 kleisma tempered 6/5s, 10 tetrads, Dave Keenan, 30-Jun-99, TD235 keenan3eb (11): Chain of 11 equal beating minor thirds, 6/5=3/2 same keenan3eb2 (11): Chain of 11 equal beating minor thirds, 6/5=3/2 opposite keenan3j (11): Chain of 11 nearly just 19-tET minor thirds, Dave Keenan, 1-Jul-99 keenan7 (22): Dave Keenan, 22 out of 72-tET periodicity block. TL 29-04-2001 keenanmt (12): Dave Keenan 1/4-comma tempered version of keenan with 6 7-limit tetrads keenanst (23): Dave Keenan, 7-limit temperament, g=260.353 kelletat (12): Herbert Kelletat's Bach-tuning (1967) kellner (12): Herbert Anton Kellner's Bach tuning. 5 1/5 Pyth. comma and 7 pure fifths kellners (12): Kellner's temperament with 1/5 synt. comma instead of 1/5 Pyth. comma kepler1 (12): Kepler's Monochord no.1, Harmonices Mundi (1619) kepler2 (12): Kepler's Monochord no.2 kepler3 (12): Kepler's choice system, Harmonices Mundi, Liber III (1619) kilroy (12): Kilroy kimball (18): Buzz Kimball 18-note just scale kimball_53 (53): Buzz Kimball 53-note just scale kirkwood (8): Scale based on Kirkwood gaps of the asteroid belt kirn-stan (12): Kirnberger temperament improved by Charles Earl Stanhope (1806) kirnberger (12): Kirnberger's well-temperament, also called Kirnberger III, letter to Forkel 1779 kirnberger1 (12): Kirnberger's temperament 1 (1766) kirnberger2 (12): Kirnberger 2: 1/2 synt. comma. "Die Kunst des reinen Satzes" (1774) kirnberger3 (12): Kirnberger 3: 1/4 synt. comma (1744) kirnberger3v (12): Variant well-temperament like Kirnberger 3, Kenneth Scholz, MTO 4.4, 1998 klais (12): Johannes Klais, Bach temperament klonaris (12): Johnny Klonaris, 19-limit harmonic scale knot (24): Smallest knot in 3-D, American Scientist, Nov-Dec '97 p506-510, trefoil knot koepf_36 (36): Siegfried Koepf, 36-tone subset of 48-tone scale (1991) koepf_48 (48): Siegfried Koepf, 48-tone scale (1991) kolinsky (12): Kolinsky's 7th root of 3/2, also invented by Augusto Novaro kora1 (7): Kora tuning Tomora Ba, also called Silaba, 1/1=F, R. King kora2 (7): Kora tuning Tomora Mesengo, also called Tomora, 1/1=F, R. King kora3 (7): Kora tuning Hardino, 1/1=F, R.King kora4 (7): Kora tuning Sauta, 1/1=F, R. King korea_5 (5): According to Lou Harrison, called "the Delightful" in Korea kornerup (19): Kornerup's temperament with fifth of (15 - sqrt 5) / 22 octaves kornerup_11 (11): Kornerup's doric minor kraeh_22 (22): Kraehenbuehl & Schmidt 7-limit 22-tone tuning kraeh_22a (46): Kraehenbuehl & Schmidt 7-limit 22-tone tuning with "inflections" for some tones kraeh_22b (22): Best 22-tET approximation of KRAEH_22A kring1 (7): Double-tie circular mirroring of 4:5:6 and Partch's 5-limit tonality Diamond kring1p3 (35): Third carthesian power of double-tie mirroring of 4:5:6 with kleismas removed kring2 (7): Double-tie circular mirroring of 6:7:8 kring2p3 (25): Third power of 6:7:8 mirroring with 1029/1024 intervals removed kring3 (7): Double-tie circular mirroring of 3:5:7 kring3bp (7): Double-tie BP circular mirroring of 3:5:7 kring4 (7): Double-tie circular mirroring of 4:5:7 kring4p3 (29): Third power of 4:5:7 mirroring with 3136/3125 intervals removed kring5 (7): Double-tie circular mirroring of 5:7:9 kring5p3 (33): Third power of 5:7:9 mirroring with 250047/250000 intervals removed kring6 (7): Double-tie circular mirroring of 6:7:9 kring6p3 (34): Third power of 6:7:9 mirroring with 118098/117649 intervals removed krousseau (12): Kami Rousseau's tri-blues scale krousseau2 (12): 19-tET version of Kami Rousseau's tri-blues scale kukuya (4): African Kukuya Horns (aerophone, ivory, one note only) kurzw_arab (12): Kurzweil "Empirical Arabic" kurzw_harmp (12): Kurzweil "Empirical Bali/Java Harmonic Pelog" kurzw_melp (12): Kurzweil "Empirical Bali/Java Melodic Pelog" kurzw_slen (12): Kurzweil "Empirical Bali/Java Slendro, Siam 7" kurzw_tibet (12): Kurzweil "Empirical Tibetian Ceremonial" kwazy (118): Kwazy temperament, g=162.741892, p=600, 5-limit lambdoma5_12 (42): 5x12 Lambdoma lambdoma_prim (56): Prime Lambdoma lambert (12): Lambert's temperament (1774) 1/7 Pyth. comma, 5 pure lara (12): Sundanese 'multi-laras' gamelan Ki Barong tuning, Weintraub, TL 15-2-99 1/1=497 lebanon (7): Lebanese scale? Dastgah Shur leedy (13): Douglas Leedy, scale for "Pastorale" (1987), 1/1=f, 10/9 only in vocal parts leeuw1 (13): Ton de Leeuw: non-oct. mode from "Car nos vignes sont en fleurs",part 5. 1/1=A leftpistol (12): Left Pistol legros1 (12): Example of temperament with 3 just major thirds legros2 (12): Example of temperament with 2 just major thirds lehman-bach (12): Brad Lehman's Bach keyboard temperament lemba10 (10): 10-note Lemba scale, Herman Miller lemba12 (12): Lemba[12] in 270-et (poptimal) lemba22 (22): Lemba[22] in 270-et (poptimal) lemba24 (24): 24-note Lemba scale for mapping millerlemba24.kbm lemba8 (8): Lemba temperament (4 down, 3 up) TOP tuning, Herman Miller, TL 22-11-2004 leusden (12): Organ in Gereformeerde kerk De Koningshof, Henk van Eeken, 1984, a'=415, modif. 1/4 mean leven (12): Leven's monochord ? ligon (12): Jacky Ligon, strictly proper all prime scale, TL 08-09-2000 ligon2 (12): Jacky Ligon, 19-limit symmetrical non-octave scale, 2001 ligon3 (16): Jacky Ligon, 23-limit non-octave scale (2001) ligon4 (21): Jacky Ligon, 2/1 Phi Scale, TL 12-04-2001 ligon5 (16): Jacky Ligon, scale for "Two Golden Flutes" (2001) ligon6 (13): Jacky Ligon, "Primal Golden Tuning" (2001) ligon7 (7): Jacky Ligon, 7 tone, 27/22=generator, MMM 22-01-2002 lindley_ea (12): Mark Lindley +J. de Boer +W. Drake (1991), for organ Grosvenor Chapel, London lindley_sf (12): Lindley (1988) suggestion nr. 2 for Stanford Fisk organ ling-lun (12): Scale of Ling Lun from C liu_major (7): Linus Liu's Major Scale, see his 1978 book, "Intonation Theory" liu_mel (9): Linus Liu's Melodic Minor, use 5 and 7 descending and 6 and 8 ascending liu_minor (7): Linus Liu's Harmonic Minor liu_pent (7): Linus Liu's "pentatonic scale" lorina (12): Lorina lt46a (29): 13-limit temperament, minimax g=495.66296 cents lucy_19 (19): Lucy's 19-tone scale lucy_24 (24): Lucy/Harrison, meantone tuning from Bbb to Cx, third=1200.0/pi, 1/1=A lucy_31 (31): Lucy/Harrison's meantone tuning, 1/1=A lucy_7 (7): Diatonic Lucy's scale lumma5 (12): Carl Lumma's 5-limit version of lumma7, also Fokker 12-tone just. lumma7 (12): Carl Lumma's 7-limit 12-tone scale, a.k.a GW Smith's Prism. TL 21-11-98 lumma7t (12): Tempered lumma7, 6 tetrads + 4 triads within 2c of Just, TL 19-2-99 lumma7t72 (12): 72-tET version of lumma7t lumma7t_keen (12): Dave Keenan's adaptation of lumma7t to include 6:8:11, TL 17-04-9 lumma_10 (10): Carl Lumma's 10-tone 125 cent Pyth. scale, TL 29-12-1999 lumma_12_fun (12): Rational well temperament based on 577/289, 3/2, and 19/16. lumma_12_moh-ha-ha (12): Rational well temperament. lumma_12_strangeion (12): 19-limit "dodekaphonic" scale. lumma_22 (22): Carl Lumma, intervals of attraction by trial and error, 1999. lumma_5151 (12): Carl Lumma's 5151 temperament III (1197/709.5/696). June 2003 lumma_al1 (12): Alaska I (1197/709.5/696), Carl Lumma, 6 June 2003. lumma_al2 (12): Alaska II (1197/707/696.5), Carl Lumma, 6 June 2003. lumma_al3 (12): Alaska III (1197/707/696.5), Carl Lumma, 6 June 2003. lumma_al4 (12): Alaska IV (1196/701/697), Carl Lumma, 6 June 2003. lumma_al5 (12): Alaska V (1197/702/696.375), Carl Lumma, 6 June 2003. lumma_al6 (12): Alaska VI (1196/701/696), Carl Lumma, 6 June 2003. lumma_al7 (12): Alaska VII, Carl Lumma, 27 Jan 2004 lumma_dec1 (10): Carl Lumma, two 5-tone 7/4-chains, 5/4 apart in 31-tET, TL 9-2-2000 lumma_dec2 (10): Carl Lumma, two 5-tone 3/2-chains, 7/4 apart in 31-tET, TL 9-2-2000 lumma_magic (12): Magic chord test, Carl Lumma, TL 24-06-99 lumma_synchtrines+2 (12): The 12-tone equal temperament with 2:3:4 brats of +2 lumma_synchtrines-2 (12): The 12-tone equal temperament with 2:3:4 brats of -2 lydian_chrom (24): Lydian Chromatic Tonos lydian_chrom2 (7): Schlesinger's Lydian Harmonia in the chromatic genus lydian_chrominv (7): A harmonic form of Schlesinger's Chromatic Lydian inverted lydian_diat (24): Lydian Diatonic Tonos lydian_diat2 (8): Schlesinger's Lydian Harmonia, a subharmonic series through 13 from 26 lydian_diat2inv (8): Inverted Schlesinger's Lydian Harmonia, a harmonic series from 13 from 26 lydian_diatcon (7): A Lydian Diatonic with its own trite synemmenon replacing paramese lydian_enh (24): Lydian Enharmonic Tonos lydian_enh2 (7): Schlesinger's Lydian Harmonia in the enharmonic genus lydian_enhinv (7): A harmonic form of Schlesinger's Enharmonic Lydian inverted lydian_pent (7): Schlesinger's Lydian Harmonia in the pentachromatic genus lydian_pis (15): The Diatonic Perfect Immutable System in the Lydian Tonos lydian_tri (7): Schlesinger's Lydian Harmonia in the first trichromatic genus lydian_tri2 (7): Schlesinger's Lydian Harmonia in the second trichromatic genus nachbaur_6 (6): Fred Nachbaur's harmonic hexatonic, as used in "Void of Sensation" nassarre (12): Nassarre's Equal Semitones negri5_19 (19): Negri temperament, g=126.238272, 5-limit negri_19 (19): Negri temperament, 13-limit, g=124.831 negri_29 (29): Negri temperament, 13-limit, g=124.831 neid-mar-morg (12): Neidhardt-Marpurg-de Morgan temperament (1858) neidhardt1 (12): Neidhardt I temperament (1724) neidhardt2 (12): Neidhardt II temperament (1724) neidhardt3 (12): Neidhardt III temperament (1724) 'Grosse Stadt' neidhardt4 (12): Neidhardt IV temperament (1724), equal temperament neidhardtn (12): Johann Georg Neidhardt's temperament (1732), alt. 1/6 & 0 P, also Marpurg nr.10 neogeb24 (24): Neo-Gothic e-based lineotuning (T/S or Blackwood's R=e, ~2.71828), 24 notes neogji12 (12): M. Schulter, neo-Gothic 12-note JI (prim. 2/3/7/11) 1/1=F with Eb key as D+1 neogp16a (16): M. Schulter, scale from mainly prime-to-prime ratios and octave complements (Gb-D#) neutr_diat (7): Neutral Diatonic, 9 + 9 + 12 parts, geometric mean of major and minor neutr_pent1 (5): Quasi-Neutral Pentatonic 1, 15/13 x 52/45 in each trichord, after Dudon neutr_pent2 (5): Quasi-Neutral Pentatonic 2, 15/13 x 52/45 in each trichord, after Dudon new_enh (7): New Enharmonic new_enh2 (7): New Enharmonic permuted newcastle (12): Newcastle modified 1/3-comma meantone norden (12): Reconstructed Schnitger temperament, organ in Norden. Ortgies, 2002 novaro (23): 9-limit diamond with 21/20, 16/15, 15/8 and 40/21 added for evenness novaro15 (49): 1-15 diamond, see Novaro, 1927, Sistema Natural base del Natural-Aproximado, p novaro_eb (12): Novaro (?) equal beating 4/3 with strectched octave, almost pure 3/2 janke1 (12): Rainer Janke, Temperatur I janke2 (12): Rainer Janke, Temperatur II janke3 (12): Rainer Janke, Temperatur III janke4 (12): Rainer Janke, Temperatur IV janke5 (12): Rainer Janke, Temperatur V janke6 (12): Rainer Janke, Temperatur VI janke7 (12): Rainer Janke, Temperatur VII jemblung1 (5): Scale of bamboo gamelan jemblung from Kalijering, slendro-like. 1/1=590 Hz. jemblung2 (5): Bamboo gamelan jemblung at Royal Batavia Society. 1/1=504 Hz. ji_10coh (10): Differentially coherent 10-tone scale ji_10coh2 (10): Other diff. coherent 10-tone scale ji_11 (11): 3 and 7 prime rational interpretation of 11-tET. OdC 2000 ji_12 (12): Basic JI with 7-limit tritone ji_12a (12): 7-limit 12-tone scale ji_12b (12): alternate 7-limit 12-tone scale ji_12c (12): Kurzweil "Just with natural b7th", is Sauveur Just with 7/4 ji_13 (13): 5-limit 12-tone symmetrical scale with two tritones ji_17 (17): 3 and 7 prime rational interpretation of 17-tET. OdC ji_17a (17): 3, 5 and 11 prime rational interpretation of 17-tET, OdC ji_17b (17): Alt. 3, 5 and 11 prime rational interpretation of 17-tET, OdC ji_19 (19): 5-limit 19-tone scale ji_20 (20): 3 and 7 prime rational interpretation of 20-tET. OdC ji_21 (21): 7-limit 21-tone just scale, Op de Coul, 2001 ji_22 (22): 5-limit 22-tone scale (Zarlino?) ji_27 (27): 7-limit rational interpretation of 27-tET, OdC ji_29 (29): 3,5,11-prime rational interpretation of 29-tET, OdC ji_30 (30): 11-limit rational interpretation of 30-tET ji_31 (31): A just 11-limit 31-tone scale, optimized for Mann complexity ji_31a (31): A just 7-limit 31-tone scale ji_31b (31): A just 5-limit 31-tone scale, corner clipped genus ji_31c (31): A just 11-limit 31-tone scale ji_5coh (5): Differential fully coherent pentatonic scale ji_6coh (6): Differential coherent 6-tone scale, OdC 2003 ji_7 (7): 7-limit rational interpretation of 7-tET. OdC ji_7a (7): Superparticular approximation to 7-tET. Op de Coul, 1998 ji_8coh (8): Differential coherent 8-tone scale, OdC, 2003 ji_8coh3 (8): Differential fully coherent 8-tone scale, OdC, 2003 ji_9coh (9): Differentially coherent 9-tone scale ji_ri24a (24): M. Schulter, just/rational intonation system - with circulating 24-note set jioct12 (12): 12-tone JI version of Messiaen's octatonic scale, Erlich & Parïzek jobin-bach (12): Emile Jobin, WTC temperament after Bach's signet johnson-secor_rwt (12): Johnson/Secor proportional-beating well-temperament with five 24/19s. johnson_44 (44): Aaron Johnson, 44-tET approximation johnson_7 (7): Aaron Johnson, 7-tET approximation johnson_eb (12): Aaron Johnson, "1/4-comma tempered" equal beating C-G-D-A-E plus just thirds johnson_ratwell (12): Aaron Johnson, rational well-temperament with five 24/19's johnson_temp (12): Aaron Johnson, temperament with just 5/4, 24/19 and 19/15 johnston (12): Ben Johnston's combined otonal-utonal scale johnston_21 (21): Johnston 21-note just enharmonic scale johnston_22 (22): Johnston 22-note scale from end of string quartet nr. 4 johnston_25 (25): Johnston 25-note just enharmonic scale johnston_6-qt (61): 11-limit complete system from Ben Johnston's _6th Quartet_ johnston_6-qt_row (12): 11-limit 'prime row' from Ben Johnston's "6th Quartet" johnston_81 (81): Johnston 81-note 5-limit scale of Sonata for Microtonal Piano jorgensen (12): Jorgensen's 5&7 temperament jousse (12): Temperament of Jean Jousse (1832) jousse2 (12): Jean Jousse's quasi-equal temperament quasi_5 (5): Quasi-Equal 5-Tone in 24-tET, 5 5 4 5 5 steps quasi_9 (9): Quasi-Equal Enneatonic, Each "tetrachord" has 125 + 125 + 125 + 125 cents quint_chrom (7): Aristides Quintilianus' Chromatic genus oconnell (25): Walter O'Connell, Pythagorean scale of 25 octaves reduced by Phi. XH 15 (1993) oconnell_11 (11): Walter O'Connell, 11-note mode of 25-tone scale oconnell_14 (14): Walter O'Connell, 14-note mode of 25-tone scale oconnell_7 (7): Walter O'Connell, 7-note mode of 25-tone scale oconnell_9 (9): Walter O'Connell, 9-tone mode of 25-tone scale oconnell_9a (9): Walter O'Connell, 7+2 major mode analogy for 25-tone scale octony_min (8): Octony on Harmonic Minor, from Palmer on an album of Turkish music octony_rot (8): Rotated Octony on Harmonic Minor octony_trans (8): Complex 10 of p. 115, an Octony based on Archytas's Enharmonic, octony_trans2 (8): Complex 6 of p. 115 based on Archytas's Enharmonic, an Octony octony_trans3 (8): Complex 5 of p. 115 based on Archytas's Enharmonic, an Octony octony_trans4 (8): Complex 11 of p. 115, an Octony based on Archytas's Enharmonic, 8 tones octony_trans5 (8): Complex 15 of p. 115, an Octony based on Archytas's Enharmonic, 8 tones octony_trans6 (8): Complex 14 of p. 115, an Octony based on Archytas's Enharmonic, 8 tones octony_u (8): 7)8 octony from 1.3.5.7.9.11.13.15, 1.3.5.7.9.11.13 tonic (subharmonics 8-16) odd1 (12): ODD-1 odd2 (12): ODD-2 oettingen (53): von Oettingen's Orthotonophonium tuning oettingen2 (53): von Oettingen's Orthotonophonium tuning with central 1/1 ogr10 (10): Optimal Golomb Ruler of 10 segments, length 72 ogr10a (10): 2nd Optimal Golomb Ruler of 10 segments, length 72 ogr11 (11): Optimal Golomb Ruler of 11 segments, length 85 ogr12 (12): Optimal Golomb Ruler of 12 segments, length 106 ogr2 (2): Optimal Golomb Ruler of 2 segments, length 3 ogr3 (3): Optimal Golomb Ruler of 3 segments, length 6 ogr4 (4): Optimal Golomb Ruler of 4 segments, length 11 ogr4a (4): 2nd Optimal Golomb Ruler of 4 segments, length 11 ogr5 (5): Optimal Golomb Ruler of 5 segments, length 17 ogr5a (5): 2nd Optimal Golomb Ruler of 5 segments, length 17 ogr5b (5): 3rd Optimal Golomb Ruler of 5 segments, length 17 ogr5c (5): 4th Optimal Golomb Ruler of 5 segments, length 17 ogr6 (6): Optimal Golomb Ruler of 6 segments, length 25 ogr6a (6): 2nd Optimal Golomb Ruler of 6 segments, length 25 ogr6b (6): 3rd Optimal Golomb Ruler of 6 segments, length 25 ogr6c (6): 4th Optimal Golomb Ruler of 6 segments, length 25 ogr6d (6): 5th Optimal Golomb Ruler of 6 segments, length 25 ogr7 (7): Optimal Golomb Ruler of 7 segments, length 34 ogr8 (8): Optimal Golomb Ruler of 8 segments, length 44 ogr9 (9): Optimal Golomb Ruler of 9 segments, length 55 oldani (12): This scale by Norbert L. Oldani appeared in Interval 5(3), p.10-11 oljare (12): Mats ïljare, scale for "Tampere" (2001) oljare17 (8): Mats ïljare, scale for "Fafner" (2001), MOS in 17-tET olympos (5): Scale of ancient Greek flutist Olympos, 6th century BC as reported by Partch opelt (19): Friederich Wilhelm Opelt 19-tone organ1373a (12): English organ tuning (1373) with 18:17:16 ficta semitones (Eb-G#) organ1373b (12): English organ tuning (1373) with 18:17:16 accidental semitones (Eb-G#) ragib (24): Idris Ragib Bey, vol.5 d'Erlanger, p 40. Idris Rag'ib Bey ragib7 (24): 7-limit version of Idris Rag'ib Bey scale rameau-flat (12): Rameau bemols, see Pierre-Yves Asselin in "Musique et temperament" rameau-gall (12): Rameau's temperament, after Gallimard (1st solution) rameau-merc (12): Rameau's temperament, after Mercadier rameau-minor (9): Rameau's systeme diatonique mineur on E. Asc. 4-6-8-9, desc. 9-7-5-4 rameau-nouv (12): Temperament by Rameau in Nouveau Systeme (1726) rameau-sharp (12): Rameau dieses, see Pierre-Yves Asselin in "Musique et temperament" rameau (12): Rameau's modified meantone temperament (1725) ramis (12): Monochord of Ramos de Pareja (Ramis de Pareia), Musica practica (1482). Carlos: Switched on Bach rapoport_8 (8): Paul Rapoport, cycle of 14/9 close to 8 out of 11-tET, XH 13, 1991 rast_moha (7): Rast + Mohajira (Dudon) 4 + 3 + 3 Rast and 3 + 4 + 3 Mohajira tetrachords rat_dorenh (7): Rationalized Schlesinger's Dorian Harmonia in the enharmonic genus rat_hypodenh (7): 1+1 rationalized enharmonic genus derived from K.S.'s 'Bastard' Hypodorian rat_hypodenh2 (7): 1+2 rationalized enharmonic genus derived from K.S.'s 'Bastard' Hypodorian rat_hypodenh3 (7): 1+3 rationalized enharmonic genus derived from K.S.'s 'Bastard' Hypodorian rat_hypodhex (7): 1+1 rationalized hexachromatic/hexenharmonic genus derived from K.S.'Bastard' rat_hypodhex2 (7): 1+2 rat. hexachromatic/hexenharmonic genus derived from K.S.'s 'Bastard' Hypodo rat_hypodhex3 (7): 1+3 rat. hexachromatic/hexenharmonic genus from K.S.'s 'Bastard' Hypodorian rat_hypodhex4 (7): 1+4 rat. hexachromatic/hexenharmonic genus from K.S.'s 'Bastard' Hypodorian rat_hypodhex5 (7): 1+5 rat. hexachromatic/hexenharmonic genus from K.S.'s 'Bastard' Hypodorian rat_hypodhex6 (7): 2+3 rationalized hexachromatic/hexenharmonic genus from K.S.'s 'Bastard' hypod rat_hypodpen (7): 1+1 rationalized pentachromatic/pentenharmonic genus derived from K.S.'s 'Bastar rat_hypodpen2 (7): 1+2 rationalized pentachromatic/pentenharmonic genus from K.S.'s 'Bastard' hyp rat_hypodpen3 (7): 1+3 rationalized pentachromatic/pentenharmonic genus from 'Bastard' Hypodorian rat_hypodpen4 (7): 1+4 rationalized pentachromatic/pentenharmonic genus from 'Bastard' Hypodorian rat_hypodpen5 (7): 2+3 rationalized pentachromatic/pentenharmonic genus from 'Bastard' Hypodorian rat_hypodpen6 (7): 2+3 rationalized pentachromatic/pentenharmonic genus from 'Bastard' Hypodorian rat_hypodtri (7): rationalized first (1+1) trichromatic genus derived from K.S.'s 'Bastard' hyp rat_hypodtri2 (7): rationalized second (1+2) trichromatic genus derived from K.S.'s 'Bastard' hyp rat_hypolenh (8): Rationalized Schlesinger's Hypolydian Harmonia in the enharmonic genus rat_hypopchrom (7): Rationalized Schlesinger's Hypophrygian Harmonia in the chromatic genus rat_hypopenh (7): Rationalized Schlesinger's Hypophrygian Harmonia in the enharmonic genus rat_hypoppen (7): Rationalized Schlesinger's Hypophrygian Harmonia in the pentachromatic genus rat_hypoptri (7): Rationalized Schlesinger's Hypophrygian Harmonia in first trichromatic genus rat_hypoptri2 (7): Rationalized Schlesinger's Hypophrygian Harmonia in second trichromatic genus rectsp10 (32): Rectangle minimal beats spectrum of order 10 rectsp10a (45): Rectangle minimal beats spectrum of order 10 union with inversion rectsp11 (42): Rectangle minimal beats spectrum of order 11 rectsp12 (46): Rectangle minimal beats spectrum of order 12 rectsp6 (12): Rectangle minimal beats spectrum of order 6 (=songlines) rectsp6a (17): Rectangle minimal beats spectrum of order 6 union with inversion rectsp7 (18): Rectangle minimal beats spectrum of order 7 rectsp7a (23): Rectangle minimal beats spectrum of order 7 union with inversion rectsp8 (22): Rectangle minimal beats spectrum of order 8 rectsp8a (31): Rectangle minimal beats spectrum of order 8 union with inversion rectsp9 (28): Rectangle minimal beats spectrum of order 9 rectsp9a (37): Rectangle minimal beats spectrum of order 9 union with inversion redfield (7): Redfield New Diatonic reinhard (12): Reinhard 19-limit superparticular reinhard17 (17): Reinhard's Harmonic-17 tuning for "Tresspass", 1998 renteng1 (5): Gamelan Renteng from Chileunyi (Tg. Sari). 1/1=330 Hz renteng2 (5): Gamelan Renteng from Chikebo (Tg. Sari). 1/1=360 Hz renteng3 (6): Gamelan Renteng from Lebakwangi (Pameungpeuk). 1/1=377 Hz renteng4 (5): Gamelan Renteng Bale` bandung from Kanoman (Cheribon). 1/1=338 Hz robot (12): Dead Robot (see lattice) robot_live (12): Live Robot romieu (12): Romieu's Monochord, Memoire theorique & pratique (1758) romieu_inv (12): Romieu inverted, Pure (just) C minor in Wilkinson: Tuning In rosati_21 (21): Dante Rosati, JI guitar tuning rosati_21a (21): Alternative version of rosati_21 with more tetrads rousseau (12): Rousseau's Monochord, Dictionnaire de musique (1768) rousseauw (12): Jean-Jacques Rousseau's temperament (1768) rsr_12 (12): RSR - 7 limit JI rvf-1 (19): D-A 695 cents, the increment is 0.25 cents, interval range 49.5 to 75.5 rvf-2 (19): 695 cents, 0.607 cents, 31-90 cents, C-A# is 7/4. rvf-3 (19): 694.737, 0.082, 25-97, the fifth E#-B# is 3/2. majmin (17): Malcolm & Marpurg 4 (Yamaha major & minor) mixed. Mersenne/Ban without D# major_clus (12): Chalmers' Major Mode Cluster major_wing (12): Chalmers' Major Wing with 7 major and 6 minor triads malcolm (12): Malcolm's Monochord (1721), and C major in Yamaha synths, Wilkinson: Tuning In malcolm2 (12): Malcolm 2 malcolm_ap (12): Best approximations in mix of all ETs from 12-23 to Malcolm's Monochord malcolm_me (7): Malcolm's Mid-East malcolme (12): Most equal interval permutation of Malcolm's Monochord malcolme2 (12): Inverse most equal interval permutation of Malcolm's Monochord malcolms (12): Symmetrical version of Malcolm's Monochord and Albion scale malerbi (12): Luigi Malerbi's well-temperament nr.1 (1794) (nr.2 = Young) malgache (12): tuning from Madagascar malgache1 (12): tuning from Madagascar malgache2 (12): tuning from Madagascar malkauns (5): Raga Malkauns, inverse of prime_5 mambuti (8): African Mambuti Flutes (aerophone; vertical wooden; one note each) mandelbaum5 (19): Mandelbaum's 5-limit 19-tone scale, kleismic detempered circle of minor thirds mandelbaum7 (19): Mandelbaum's 7-limit 19-tone scale marimba1 (17): Marimba of the Bakwese, SW Belgian Congo (Zaire). 1/1=140.5 Hz marimba2 (17): Marimba of the Bakubu, S. Belgian Congo (Zaire). 1/1=141.5 Hz marimba3 (10): Marimba from the Yakoma tribe, Zaire. 1/1=185.5 Hz marion (19): scale with two different ET step sizes marion1 (24): Marion's 7-limit Scale # 1 marion10 (25): Marion's 7-limit Scale # 10 marion15 (24): Marion's 7-limit Scale # 15 marion19 (25): Marion's 7-limit Scale # 19 marion26 (24): Marion's 7-limit Scale # 26 marissing (12): Peter van Marissing, just scale, Mens en Melodie, 1979 marpurg-1 (12): Other temperament by Marpurg, 3 fifths 1/3 Pyth. comma flat marpurg-t1 (12): Marpurg's temperament nr.1, Kirnbergersche Temperatur (1766) marpurg-t11 (12): Marpurg's temperament nr.11, 6 tempered fifths marpurg-t12 (12): Marpurg's temperament nr.12, 4 tempered fifths marpurg-t2 (12): Marpurg's temperament nr.2, 2 tempered fifths, Neue Methode (1790) marpurg-t3 (12): Marpurg's temperament nr.3, 2 tempered fifths marpurg-t4 (12): Marpurg's temperament nr.4, 2 tempered fifths marpurg-t5 (12): Marpurg's temperament nr.5, 2 tempered fifths marpurg-t7 (12): Marpurg's temperament nr.7, 3 tempered fifths marpurg-t8 (12): Marpurg's temperament nr.8, 4 tempered fifths marpurg-t9 (12): Marpurg's temperament nr.9, 4 tempered fifths marpurg (12): Marpurg, Versuch ueber die musikalische Temperatur (1776), p. 153 marpurg1 (12): Marpurg's Monochord no.1 (1776) marpurg3 (12): Marpurg 3 marpurg4 (12): Marpurg 4, also Yamaha Pure Minor marsh (12): John Marsh's meantone temperament (1809) marsh2 (12): John Marsh's quasi-equal temperament (1840) mavila12 (12): A 12-note mavila scale (for warping meantone-based music) mavila9 (9): 9-note scale of mavila temperament (TOP tuning) mavlim1 (9): First 27/25&135/128 scale mbira_banda (7): Mubayiwa Bandambira's tuning of keys R2-R9 from Berliner: The soul of mbira. mbira_banda2 (21): Mubayiwa Bandambira's Mbira DzaVadzimu tuning B1=114 Hz mbira_gondo (21): John Gondo's Mbira DzaVadzimu tuning B1=122 Hz mbira_kunaka (7): John Kunaka's mbira tuning of keys R2-R9 mbira_kunaka2 (21): John Kunaka's Mbira DzaVadzimu tuning B1=113 Hz mbira_mude (21): Hakurotwi Mude's Mbira DzaVadzimu tuning B1=132 Hz mbira_mujuru (21): Ephat Mujuru's Mbira DzaVadzimu tuning, B1=106 Hz mbira_zimb (7): Shona mbira scale mboko_bow (2): African Mboko Mouth Bow (chordophone, single string, plucked) mboko_zither (7): African Mboko Zither (chordophone; idiochordic palm fibre, plucked) mcclain (12): McClain's 12-tone scale, see page 119 of The Myth of Invariance mcclain_18 (18): McClain's 18-tone scale, see page 143 of The Myth of Invariance mcclain_8 (8): McClain's 8-tone scale, see page 51 of The Myth of Invariance mccoskey_22 (22): 31-limit rational interpretation of 22-tET, Marion McCoskey mclaren_bar (13): Metal bar scale. see McLaren, Xenharmonicon 15, pp.31-33 mclaren_cps (15): 2)12 [1,2,3,4,5,6,8,9,10,12,14,15] a degenerate CPS mclaren_harm (11): from "Wilson part 9", claimed to be Schlesingers Dorian Enharmonic, prov. unkn mclaren_rath1 (12): McLaren Rat H1 mclaren_rath2 (12): McLaren Rat H2 mean10 (12): 3/10-comma meantone scale mean11 (12): 3/11-comma meantone scale. A.J. Ellis no. 10 mean11ls_19 (19): Least squares appr. to 3/2, 5/4, 7/6, 15/14 and 11/8, Petr Parïzek mean13 (12): 3/13-comma meantone scale mean14 (12): 3/14-comma meantone scale (Giordano Riccati, 1762) mean14_15 (15): 15 of 3/14-comma meantone scale mean14_19 (19): 19 of 3/14-comma meantone scale mean14_7 (7): Least squares appr. of 5L+2S to Ptolemy's Intense Diatonic scale mean14a (12): fifth of sqrt(5/2)-1 octave "recursive" meantone, Paul Hahn mean16 (12): 3/16-comma meantone scale mean17 (12): 4/17-comma meantone scale, least squares error of 5/4 and 3/2 mean17_17 (17): 4/17-comma meantone scale with split C#/Db, D#/Eb, F#/Gb, G#/Ab and A#/Bb mean17_19 (19): 4/17-comma meantone scale, least squares error of 5/4 and 3/2 mean18 (12): 5/18-comma meantone scale (Smith). 3/2 and 5/3 eq. beat. A.J. Ellis no. 9 mean19 (12): 5/19-comma meantone scale, fifths beats three times third. A.J. Ellis no. 11 mean19r (12): Approximate 5/19-comma meantone with 19/17 tone, Petr Parizek, 2002 mean23 (12): 5/23-comma meantone scale, A.J. Ellis no. 4 mean23six (12): 6/23-comma meantone scale mean25 (12): 7/25-comma meantone scale, least square weights 3/2:0 5/4:1 6/5:1 mean26 (12): 7/26-comma meantone scale (Woolhouse 1835). Almost equal to meaneb742 mean26_21 (21): 21 of 7/26-comma meantone scale (Woolhouse 1835) mean27 (12): 7/27-comma meantone scale, least square weights 3/2:2 5/4:1 6/5:1 mean29 (12): 7/29-comma meantone scale, least square weights 3/2:4 5/4:1 6/5:1 mean2sev (12): 2/7-comma meantone scale. Zarlino's temperament (1558). See also meaneb371 mean2sev_15 (15): 15 of 2/7-comma meantone scale mean2sev_19 (19): 19 of 2/7-comma meantone scale mean2sev_31 (31): 31 of 2/7-comma meantone scale mean2seveb (12): "2/7-comma" meantone with equal beating fifths. A.J. Ellis no. 8 mean2sevr (12): Rational approximation to 2/7-comma meantone, 1/1 = 262.9333 mean9 (12): 2/9-comma meantone scale, Lemme Rossi, Sistema musico (1666) mean94 (12): 4/9-comma meantone scale mean9_15 (15): 15 of 2/9-comma meantone scale mean9_19 (19): 19 of 2/9-comma meantone scale mean9_31 (31): 31 of 2/9-comma meantone scale meaneb1071 (12): Equal beating 7/4 = 3/2 same. meaneb1071a (12): Equal beating 7/4 = 3/2 opposite. meaneb341 (12): Equal beating 6/5 = 5/4 same. Almost 4/15 Pyth. comma meaneb371 (12): Equal beating 6/5 = 3/2 same. Practically 2/7-comma (Zarlino) meaneb371a (12): Equal beating 6/5 = 3/2 opposite. Almost 2/5-comma meaneb381 (12): Equal beating 6/5 = 8/5 same. Almost 1/7-comma meaneb451 (12): Equal beating 5/4 = 4/3 same, 5/24 comma meantone. A.J. Ellis no. 6 meaneb471 (12): Equal beating 5/4 = 3/2 same. Almost 5/17-comma meaneb471a (12): Equal beating 5/4 = 3/2 opposite. Almost 1/5 Pyth. Gottfried Keller (1707) meaneb471b (12): 21/109-comma meantone with 9/7 major thirds, almost equal beating 5/4 and 3/2 meaneb472 (12): Beating of 5/4 = twice 3/2 same. Almost 5/14-comma meaneb472_19 (19): Beating of 5/4 = twice 3/2 same, 19 tones meaneb472a (12): Beating of 5/4 = twice 3/2 opposite. Almost 3/17-comma meaneb591 (12): Equal beating 4/3 = 5/3 same. meaneb732 (12): Beating of 3/2 = twice 6/5 same. Almost 4/13-comma meaneb732_19 (19): Beating of 3/2 = twice 6/5 same, 19 tones meaneb732a (12): Beating of 3/2 = twice 6/5 opposite. Almost 1/3 Pyth. comma meaneb742 (12): Beating of 3/2 = twice 5/4 same. meaneb742a (12): Beating of 3/2 = twice 5/4 opposite. Almost 3/13-comma, 3/14 Pyth. comma meaneb781 (12): Equal beating 3/2 = 8/5 same. meaneb891 (12): Equal beating 8/5 = 5/3 same. Almost 5/18-comma meaneight (12): 1/8 Pyth. comma meantone scale meanfifth (12): 1/5-comma meantone scale (Verheijen) meanfifth2 (12): 1/5-comma meantone by John Holden (1770) meanfifth_19 (19): 19 of 1/5-comma meantone scale meanfifth_43 (43): Complete 1/5-comma meantone scale meanfiftheb (12): "1/5-comma" meantone with equal beating fifths meangold (12): Meantone scale with Blackwood's R = phi, and diat./chrom. ST = phi, ~4/15-comma meanhalf (12): 1/2-comma meantone scale meanhar2 (12): 1/9-Harrison's comma meantone scale meanhar3 (12): 1/11-Harrison's comma meantone scale meanharris (12): 1/10-Harrison's comma meantone scale meanhsev (41): 1/14-septimal schisma tempered meantone scale meanhskl (12): Half septimal kleisma meantone meanlst357_19 (19): 19 of mean-tone scale, least square error in 3/2, 5/4 and 7/4 meanmalc (12): Meantone approximation to Malcolm's Monochord, 3/16 Pyth. comma meannkleis (12): 1/5 kleisma tempered meantone scale meanpi (12): Pi-based meantone with Harrison's major third by Erv Wilson meanpi2 (12): Pi-based meantone by Erv Wilson analogous to 22-tET meanpkleis (12): 1/5 kleisma positive temperament meanquar (12): 1/4-comma meantone scale. Pietro Aaron's temp. (1523). 6/5 beats twice 3/2 meanquar_14 (14): 1/4-comma meantone scale with split D#/Eb and G#/Ab, Otto Gibelius (1666) meanquar_15 (15): 1/4-comma meantone scale with split C#/Db, D#/Eb and G#/Ab meanquar_16 (16): 1/4-comma meantone scale with split C#/Db, D#/Eb, G#/Ab and A#/Bb meanquar_17 (17): 1/4-comma meantone scale with split C#/Db, D#/Eb, F#/Gb, G#/Ab and A#/Bb meanquar_19 (19): 19 of 1/4-comma meantone scale meanquar_27 (27): 27 of 1/4-comma meantone scale meanquar_31 (31): 31 of 1/4-comma meantone scale meanquareb (12): Variation on 1/4-comma meantone with equal beating fifths meanquarm23 (12): 1/4-comma meantone approximation with minimal order 23 beatings meanquarr (12): Rational approximation to 1/4-comma meantone, Kenneth Scholz, MTO 4.4, 1998 meansabat (12): 1/9-schisma meantone scale of Eduard Sa'bat-Garibaldi meansabat_53 (53): 53-tone 1/9-schisma meantone scale meanschis (12): 1/8-schisma temperament, Helmholtz meanschis7 (12): 1/7-schisma linear temperament meanschis_17 (17): 17-tone 1/8-schisma linear temperament meansept (12): Meantone scale with septimal diminished fifth meansept2 (19): Meantone scale with septimal neutral second meansept3 (41): Pythagorean scale with septimal minor third meansept4 (41): Pythagorean scale with septimal narrow fourth meansev (12): 1/7-comma meantone scale, Jean-Baptiste Romieu (1755) meansev2 (12): Meantone scale with 1/7-comma stretched octave (stretched meansept) meansev_19 (19): 19 of 1/7-comma meantone scale meanseveb (12): "1/7-comma" meantone with equal beating fifths meansixth (12): 1/6-comma meantone scale (tritonic temperament of Salinas) meansixth_19 (19): 19 of 1/6-comma meantone scale meansixtheb (12): "1/6-comma" meantone with equal beating fifths meansixthm (12): modified 1/6-comma meantone scale, wolf spread over 2 fifths meansixthm2 (12): modified 1/6-comma meantone scale, wolf spread over 4 fifths meansixthpm (12): modified 1/6P-comma temperament, French 18th century meansixthso (12): 1/6-comma meantone scale with 1/6-comma stretched oct, Dave Keenan TL 13-12-99 meanstr (12): Meantone with 1/9-comma stretched octave, Petr Parizek (2006) meanten (12): 1/10-comma meantone scale meanthird (12): 1/3-comma meantone scale (Salinas) meanthird_19 (19): Complete 1/3-comma meantone scale meanthirdeb (12): "1/3-comma" meantone with equal beating fifths meanvar1 (12): Variable meantone 1: C-G-D-A-E 1/4, others 1/6 meanvar2 (12): Variable meantone 2: C..E 1/4, 1/5-1/6-1/7-1/8 outward both directions meanvar3 (12): Variable meantone 3: C..E 1/4, 1/6 next, then Pyth. meanvar4 (12): Variable meantone 4: naturals 1/4-comma, accidentals Pyth. mediant16 (16): Mediant doubling of octave done four times mercadier (12): Mercadier's well-temperament (1777), 1/12 and 1/6 Pyth. comma mercadier2 (12): Mercadier de Belestas (1776) mercator (19): 19 out of 53-tET, see Mandelbaum p. 331 merrick (12): A. Merrick's melodically tuned equal temperament (1811) mersen_l1 (12): Mersenne lute 1 mersen_l2 (12): Mersenne lute 2 mersen_s1 (12): Mersenne spinet 1 mersen_s2 (12): Mersenne spinet 2 mersenmt1 (12): Mersenne's Improved Meantone 1 mersenmt2 (12): Mersenne's Improved Meantone 2 mersenne (31): 31-note choice system of Mersenne, Harmonie universelle (1636) meyer (19): Max Meyer, see Doty, David, 1/1 August 1992 (7:4) p.1 and 10-14 meyer_29 (29): Max Meyer, see Doty, David, 1/1 August 1992 (7:4) p.1 and 10-14 mid_enh1 (7): Mid-Mode1 Enharmonic, permutation of Archytas's with the 5/4 lying medially mid_enh2 (7): Permutation of Archytas' Enharmonic with the 5/4 medially and 28/27 first miller19 (19): TOP tempered nr. 64 [1202.9, 570.4479508], 7-limit {225/224, 1029/1000} miller7 (12): Herman Miller, 7-limit JI. mode of parizek_ji1 miller_12 (12): Herman Miller, scale with appr. to three 7/4 and one 11/8. Tuning List 19-11-99 miller_12a (12): Herman Miller, "Starling" scale, alternative version TL 25-11-99 miller_12r (12): Herman Miller, "Starling" scale rational version miller_ar1 (12): Herman Miller, "Arrow I" well-temperament miller_ar2 (12): Herman Miller, "Arrow II" well-temperament miller_b1 (12): Herman Miller, "Butterfly I" well-temperament miller_b2 (12): Herman Miller, "Butterfly II" well-temperament miller_bug (12): Herman Miller, "Bug I" well-temperament miller_dim (20): Diminished temperament, g=92.421, oct=1/4, 7-limit miller_nikta (19): Herman Miller, 19-tone scale of "Nikta". Tuning List 22-1-99 miller_sp (14): Herman Miller, Superpelog temperament, TOP tuning minor_5 (5): A minor pentatonic minor_clus (12): Chalmers' Minor Mode Cluster, Genus [333335] minor_wing (12): Chalmers' Minor Wing with 7 minor and 6 major triads minortone (46): Minortone temperament, g=182.466089, 5-limit miracle1 (21): 21 out of 72-tET Pyth. scale "Miracle/Blackjack", Keenan & Erlich, TL 2-5-2001 miracle1a (21): Version of Blackjack with just 11/8 intervals miracle2 (31): 31 out of 72-tET Pythagorean scale "Miracle/Canasta", tempered Fokker-M, 36 7-limit tetrads miracle24 (24): Miracle[24] in 72-tET tuning. miracle2a (31): Version of Canasta with just 11/8 intervals miracle3 (41): 41 out of 72-tET Pythagorean scale "Miracle/Studloco", Erlich/Keenan 2001 miracle31s (31): Canasta with Secor's minimax generator of 116.7155941 cents (5:9 exact). XH5, 1976 miracle3a (41): Version of Studloco with just 11/8 intervals miracle3ls (41): Miracle-41 in a 7-limit least-squares tuning, Gene Ward Smith, 2001 miracle3p (41): Least squares Pythagorean approximation to partch_43 miracle41s (41): StudLoco with Secor's minimax generator of 116.7155941 cents (5:9 exact). XH5, 1976 miracle_12 (12): A 12-tone subset of Blackjack with six 4-7-9-11 tetrads miracle_12a (12): A 12-tone chain of Miracle generators and subset of Blackjack 24erlich-keenan (24): 24 note mapping for Erlich/Keenan Miracle scale low version, tuned to 72-equal miracle_8 (8): tet3a in 72-et miring1 (5): Gamelan Miring from Serdang wetan, Tangerang. 1/1=309.5 Hz miring2 (5): Gamelan Miring (Melog gender) from Serdang wetan misca (9): 21/20 x 20/19 x 19/18=7/6 7/6 x 8/7=4/3 miscb (9): 33/32 x 32/31x 31/27=11/9 11/9 x 12/11=4/3 miscc (9): 96/91 x 91/86 x 86/54=32/27. 32/27 x 9/8=4/3. miscd (9): 27/26 x 26/25 x 25/24=9/8. 9/8 x 32/27=4/3. misce (9): 15/14 x 14/13 x 13/12=5/4. 5/4 x 16/15= 4/3. miscf (9): SupraEnh1 miscg (9): SupraEnh 2 misch (9): SupraEnh 3 misty (63): Misty temperament, g=96.787939, p=400, 5-limit mistyschism (12): Mistyschism scale 32805/32768 and 67108864/66430125 mixed9_3 (9): A mixture of the hemiolic chromatic and diatonic genera, 75 + 75 + 150 + 200 c mixed9_4 (9): Mixed enneatonic 4, each "tetrachord" contains 67 + 67 + 133 + 233 cents. mixed9_5 (9): A mixture of the intense chromatic genus and the permuted intense diatonic mixed9_6 (9): Mixed 9-tonic 6, Mixture of Chromatic and Diatonic mixed9_7 (9): Mixed 9-tonic 7, Mixture of Chromatic and Diatonic mixed9_8 (9): Mixed 9-tonic 8, Mixture of Chromatic and Diatonic mixol_chrom (24): Mixolydian chromatic tonos mixol_chrom2 (7): Schlesinger's Mixolydian Harmonia in the chromatic genus mixol_chrominv (7): A harmonic form of Schlesinger's Chromatic Mixolydian inverted mixol_diat (24): Mixolydian diatonic tonos mixol_diat2 (8): Schlesinger's Mixolydian Harmonia, a subharmonic series though 13 from 28 mixol_diatcon (7): A Mixolydian Diatonic with its own trite synemmenon replacing paramese mixol_diatinv (7): A Mixolydian Diatonic with its own trite synemmenon replacing paramese mixol_diatinv2 (8): Inverted Schlesinger's Mixolydian Harmonia, a harmonic series from 14 from 28 mixol_enh (24): Mixolydian Enharmonic Tonos mixol_enh2 (7): Schlesinger's Mixolydian Harmonia in the enharmonic genus mixol_enhinv (7): A harmonic form of Schlesinger's Mixolydian inverted mixol_penta (7): Schlesinger's Mixolydian Harmonia in the pentachromatic genus mixol_pis (15): The Diatonic Perfect Immutable System in the Mixolydian Tonos mixol_tri1 (7): Schlesinger's Mixolydian Harmonia in the first trichromatic genus mixol_tri2 (7): Schlesinger's Mixolydian Harmonia in the second trichromatic genus mmmgeo1 (7): Scale for MakeMicroMusic in Peppermint 24, maybe a bit like Georgian tunings mmmgeo2 (7): Scale for MakeMicroMusic in Peppermint 24, maybe a bit like Georgian tunings mmmgeo3a (7): Peppermint 24 scale for MakeMicroMusic, maybe a bit "Georgian-like"? mmmgeo4a (7): Peppermint 24 scale for MakeMicroMusic, maybe a bit "Georgian-like"? mmmgeo4b (7): Peppermint 24 scale for MakeMicroMusic, maybe a bit "Georgian-like"? mmswap (12): Swapping major and minor in 5-limit JI mokhalif (7): Iranian mode Mokhalif from C montvallon (12): Montvallon's Monochord, Nouveau sisteme de musique (1742) monzismic (53): Monzismic temperament, g=249.018448, 5-limit sevengroups (5): Here are some suggestions for a logical system encompassing intervals into seven broad groups: skhisma, kleisma, comma, monzo-sym-11 (41): Monzo symmetrical system: 11-limit monzo-sym-5 (13): Monzo symmetrical system: 5-limit monzo-sym-7 (25): Monzo symmetrical system: 7-limit monzo_sumerian_2place12 (12): Monzo - most accurate 2-place sexagesimal 12-tET approximation monzo_sumerian_simp12 (12): Monzo - simplified 2-place sexagesimal 12-tET approximation morgan (12): Augustus de Morgan's temperament (1843) mos11-34 (11): Wilson 11 of 34-tET, G=9, Chain of minor & major thirds with Kleismatic fusion mos12-17 (12): MOS 12 of 17, generator 7 mos12-22 (12): MOS 12 of 22, contains nearly just, recognizable diatonic, and pentatonic scales mos13-22 (13): MOS 13 of 22, contains 5 and 9 tone MOS as well. G=5 or 17 mos15-22 (15): MOS 15 in 22, contains 7 and 8 tone MOS as well. G= 3 or 19 moscow (12): Charles E. Moscow's equal beating piano tuning (1895) mundeuc45 (45): Euclidean reduced detempered Miracle[45] with Tenney tie-breaker musaqa (7): Egyptian scale by Miha'il Musaqa musaqa_24 (24): from d'Erlanger vol.5, p.34, after Mih.a'il Mu^saqah, 1899, a Lebanese scholar myna23 (23): 23 notes of Myna temperament, 7-limit TOP tuning (Paul Erlich) mystic-r (5): Skriabin's mystic chord, op. 60 rationalised mystic (5): Skriabin's mystic chord, op. 60 urmawi (7): al-Urmawi, one of twelve maqam rows. First tetrachord is Rast valentine (12): Robert Valentine, tuning with primes 3 & 19, TL 7-2-2002 valentine2 (15): Robert Valentine, two octave 31-tET subset for guitar, TL 10-5-2002 vallotti (12): Vallotti & Young scale (Vallotti version) vavoom (75): Vavoom temperament, g=111.875426, 5-limit veroli (12): Claudio di Veroli's well temperament (1978) vertex_chrom (7): A vertex tetrachord from Chapter 5, 66.7 + 266.7 + 166.7 cents vertex_chrom2 (7): A vertex tetrachord from Chapter 5, 83.3 + 283.3 + 133.3 cents vertex_chrom3 (7): A vertex tetrachord from Chapter 5, 87.5 + 287.5 + 125 cents vertex_chrom4 (7): A vertex tetrachord from Chapter 5, 88.9 + 288.9 + 122.2 cents vertex_chrom5 (7): A vertex tetrachord from Chapter 5, 133.3 + 266.7 + 100 cents vertex_diat (7): A vertex tetrachord from Chapter 5, 233.3 + 133.3 + 133.3 cents vertex_diat10 (7): A vertex tetrachord from Chapter 5, 212.5 + 162.5 + 125 cents vertex_diat11 (7): A vertex tetrachord from Chapter 5, 212.5 + 62.5 + 225 cents vertex_diat12 (7): A vertex tetrachord from Chapter 5, 200 + 125 + 175 cents vertex_diat2 (7): A vertex tetrachord from Chapter 5, 233.3 + 166.7 + 100 cents vertex_diat3 (7): A vertex tetrachord from Chapter 5, 75 + 225 + 200 cents vertex_diat4 (7): A vertex tetrachord from Chapter 5, 225 + 175 + 100 cents vertex_diat5 (7): A vertex tetrachord from Chapter 5, 87.5 + 237.5 + 175 cents vertex_diat7 (7): A vertex tetrachord from Chapter 5, 200 + 75 + 225 cents vertex_diat8 (7): A vertex tetrachord from Chapter 5, 100 + 175 + 225 cents vertex_diat9 (7): A vertex tetrachord from Chapter 5, 212.5 + 137.5 + 150 cents vertex_sdiat (7): A vertex tetrachord from Chapter 5, 87.5 + 187.5 + 225 cents vertex_sdiat2 (7): A vertex tetrachord from Chapter 5, 75 + 175 + 250 cents vertex_sdiat3 (7): A vertex tetrachord from Chapter 5, 25 + 225 + 250 cents vertex_sdiat4 (7): A vertex tetrachord from Chapter 5, 66.7 + 183.3 + 250 cents vertex_sdiat5 (7): A vertex tetrachord from Chapter 5, 233.33 + 16.67 + 250 cents vicentino1 (36): Usual Archicembalo tuning, 31-tET plus D,E,G,A,B a 10th tone higher vicentino2 (36): Alternative Archicembalo tuning, lower 3 rows the same upper 3 rows 3/2 higher vicentino2q217 (36): Vicentino's second tuning, 217-tET version vicentino36 (36): Vicentino's second tuning of 1555 victor_eb (12): Equal beating Victorian piano temperament, interpr. by Bill Bremmer (improved) victorian (12): Form of Victorian temperament (1885) vitale1 (16): Rami Vitale's 7-limit just scale vitale2 (16): Rami Vitale, inverse mode of vitale1 vitale3 (23): Superset of several Byzantine scales by Rami Vitale, TL 29-Aug-2001 vogel_21 (21): Martin Vogel's 21-tone Archytas system, see Divisions of the tetrachord vogelh_b (12): Harald Vogel's temperament, van Eeken organ in Bunschoten, Immanuelkerk, 1992 vogelh_fisk (12): Modified meantone tuning of Fisk organ in Memorial Church at Stanford vogelh_hb (12): Harald Vogel hybrid meantone (1984) vogelh_jakobi (12): Harald Vogel's temperament for the Schnitger organ in St. Jakobi, Hamburg volans (7): African scale according to Kevin Volans 1/1=G vong (7): Vong Co Dan Tranh scale, Vietnam vries19-72 (18): Leo de Vries 19/72 Through-Transposing-Tonality 18 tone scale vries35-72 (17): Leo de Vries 35/72 Through-Transposing-Tonality 17 tone scale vries5-72 (18): Leo de Vries 5/72 Through-Transposing-Tonality 18 tone scale vries6-31 (11): Leo de Vries 6/31 TTT used in "For 31-tone organ" (1995) vulture (53): Vulture temperament, g=475.542233, 5-limit walker_21 (21): Douglas Walker, 1977, for "out of the fathomless dark/into the limitless light walkerr_11 (11): Robert Walker, "Seven to Pi" scale, TL 09-07-2002 wauchope (8): Symmetrical 7-limit JI whole-half step scale, Ken Wauchope wendell1 (12): Robert Wendell's Natural Synchronous well-temperament (2003) wendell1r (12): Rational version of wendell1 by Gene Ward Smith wendell2 (12): Robert Wendell's Very Mild Synchronous well-temperament (2003) werck1 (20): Werckmeister I (just intonation) werck3 (12): Andreas Werckmeister's temperament III (the most famous one, 1681) werck3_eb (12): Werckmeister III equal beating version, 5/4 beats twice 3/2 werck3_mod (12): Modified Werckmeister III with B between E and F#, Nijsse (1997), organ Soest werck4 (12): Andreas Werckmeister's temperament IV werck5 (12): Andreas Werckmeister's temperament V werck6 (12): Andreas Werckmeister's "septenarius" tuning VI werck6_dup (12): Andreas Werckmeister's VI in the interpretation by Dupont (1935) werck_cl5 (12): Werckmeister Clavier temperament (Nothw. Anm.) Poletti reconstr. 1/5-comma werck_cl6 (12): Werckmeister Clavier temperament (Nothw. Anm.) Poletti reconstr. 1/6-comma werck_puzzle (12): From Hypomnemata Musica, 1697, p. 49, 1/1=192, fifths tempered superparticular white (22): Justin White's 22-tone scale based on Al-Farabi's tetrachord wicks (12): Mark Wicks' equal beating temperament for organs (1887) wier_cl (12): Danny Wier, ClownTone (2003) wiesse (12): Von Wiesse's 1/2 Pyth. comma tuning wilson1 (19): Wilson's 19-tone Scott scale (1976) wilson11 (19): Wilson 11-limit 19-tone scale, 1977 wilson1t (19): Wilson's Scott scale, wilson1, in minimax minerva tempering wilson2 (19): Wilson 19-tone, 1975 wilson3 (19): Wilson 19-tone wilson5 (22): Wilson's 22-tone 5-limit scale wilson7 (22): Wilson's 22-tone 7-limit 'marimba' scale wilson7_2 (22): Wilson 7-limit scale wilson7_3 (22): Wilson 7-limit scale wilson7_4 (22): Wilson 7-limit 22-tone scale XH 3, 1975 wilson_17 (17): Wilson's 17-tone 5-limit scale wilson_31 (31): Wilson 11-limit 31-tone scale XH 3, 1975 wilson_41 (41): Wilson 11-limit 41-tone scale XH 3, 1975 wilson_alessandro (56): D'Alessandro, genus [3 3 3 5 7 11 11] plus 8 pigtails, XH 12, 1989 wilson_bag (7): Erv's bagpipe, mar '97, after Theodore Podnos (37-39). wilson_class (12): Class Scale, Erv Wilson, 9 july 1967 wilson_dia1 (22): Wilson Diaphonic cycles, tetrachordal form wilson_dia2 (22): Wilson Diaphonic cycle, conjunctive form wilson_dia3 (22): Wilson Diaphonic cycle on 3/2 wilson_dia4 (22): Wilson Diaphonic cycle on 4/3 wilson_duo (22): Wilson 'duovigene' wilson_enh (7): Wilson's Enharmonic & 3rd new Enharmonic on Hofmann's list of superp. 4chords wilson_enh2 (7): Wilson's 81/64 Enharmonic, a strong division of the 256/243 pyknon wilson_facet (22): Wilson study in 'conjunct facets', Hexany based wilson_gh1 (7): Golden Horagram nr.1: 1phi+0 / 7phi+1 wilson_gh11 (7): Golden Horagram nr.11: 1phi+0 / 3phi+1 wilson_gh2 (7): Golden Horagram nr.2: 1phi+0 / 6phi+1 wilson_gh50 (12): Golden Horagram nr.50: 7phi+2 / 17phi+5 wilson_helix (12): Wilson's Helix Song, see David Rosenthal, Helix Song, XH 7&8, 1979. Also Secor, 1964 wilson_hypenh (7): Wilson's Hyperenharmonic, this genus has a CI of 9/7 wilson_l1 (22): Wilson 11-limit scale wilson_l2 (22): Wilson 11-limit scale wilson_l3 (22): Wilson 11-limit scale wilson_l4 (22): Wilson 11-limit scale wilson_l5 (22): Wilson 11-limit scale wilson_l6 (22): Wilson 1 3 7 9 11 15 eikosany plus 9/8 and tritone. Used Stearns: Jewel window (21): Window lattice wonder1 (31): Wonder Scale, gen=~233.54 cents, 8/7+1029/1024^7/25, LS 12:14:18:21, M.Schulter wonder36 (31): Wonder Scale, 36-tET version wronski (12): Wronski's scale, from Jocelyn Godwin, "Music and the Occult", p. 105. wurschmidt (12): Wïrschmidt's normalised 12-tone system wurschmidt1 (19): Wïrschmidt-1 19-tone scale wurschmidt2 (19): Wïrschmidt-2 19-tone scale wurschmidt_31 (31): Wïrschmidt's 31-tone system wurschmidt_31a (31): Wïrschmidt's 31-tone system with alternative tritone wurschmidt_53 (53): Wïrschmidt's 53-tone system wurschmidt_temp (31): Wïrschmidt temperament, 5-limit, g=387.744375, 5-limit t-side (12): Tau-on-Side t-side2 (12): Tau-on-Side opposite tagawa_55 (55): Rick Tagawa, 17-limit diamond subset with good 72-tET approximation, 2003 tamil (22): Possible Tamil sruti scale. Alternative 11th sruti is 45/32 or 64/45 tamil_vi (12): Vilarippalai scale in Tamil music, Vidyasankar Sundaresan tamil_vi2 (12): Vilarippalai scale with 1024/729 tritone tanaka (26): 26-note choice system of Shohï Tanaka, Studien i.G.d. reinen Stimmung (1890) tanbur (12): Sub-40 tanbur scale tansur (12): William Tans'ur temperament from A New Musical Grammar (1746) p. 73 tartini_7 (7): Tartini (1754) with 2 neochromatic tetrachords, 1/1=d, Minor Gipsy (Slovakia) taylor_g (12): Gregory Taylor's Dutch train ride scale based on pelog_schmidt taylor_n (12): Nigel Taylor's Circulating Balanced temperament (20th cent.) telemann (44): G.Ph. Telemann (1767). 55-tET interpretation of Klang- und Intervallen-Tafel telemann_28 (28): Telemann's tuning as described on Sorge's monochord, 1746, 1748, 1749 temes-mix (9): Temes' 5-tone Phi scale mixed with its octave inverse temes-ur (5): Temes' Ur 5-tone phi scale temes (10): Temes' 5-tone Phi scale / 2 cycle temes2-mix (18): Temes' 2 cycle Phi scale mixed with its 4/1 inverse temp10coh (10): Differential coherent 10-tone scale, OdC, 2003 temp10ebss (10): Cycle of 10 equal "beating" 15/14's temp11ebst (11): Cycle of 11 equal beating 9/7's temp12coh3 (12): Differential coherent scale, interval=3, OdC, 2003 temp12ebf (12): Equal beating temperament tuned by The Best Factory Tuners (1840) temp12ebf4 (12): Eleven equal beating fifths and just fourth temp12ebfo (12): Equal beating fifths and fifth beats twice octave at C temp12ebfp (12): All fifths except G#-Eb beat same as 700 c. C-G temp12ebfr (12): Exact values of equal beating temperament of Best Factory Tuners (1840) temp12ep (12): Pythagorean comma distributed equally over octave and fifth: 1/19-Pyth comma temp12fo1o (12): Fifth beats same octave opposite temp12fo2o (12): Fifth beats twice octave opposite temp12p10 (12): 1/10-Pyth. comma well temperament temp12p6 (12): Modified 1/6-Pyth. comma temperament temp12p8 (12): 1/8-Pyth. comma well temperament temp12p8a (12): 1/8-Pyth. comma well temperament, consecutive just fifths temp12s17 (12): 4/17th synt. comma "well"-temperament. OdC 1999 temp12s3 (12): 1/3 synt. comma "well"-temperament. OdC 1999 temp12septendec (12): Scale with 18/17 steps temp12w2b (12): The fifths on white keys beat twice the amount of fifths on black keys temp15coh (15): Differential coherent 15-tone scale, OdC, 2003 temp15ebmt (15): Cycle of 15 equal beating minor thirds temp15ebsi (15): Cycle of 15 equal beating major sixths temp15mt (15): Cycle of 15 minor thirds, Petr Parizek temp16d3 (16): Cycle of 16 thirds tempered by 1/3 small diesis temp16d4 (16): Cycle of 16 thirds tempered by 1/4 small diesis temp16ebs (16): Cycle of 16 equal beating sevenths temp16ebt (16): Cycle of 16 equal beating thirds temp16l4 (16): Cycle of 16 fifths tempered by 1/4 major limma temp17c10 (17): Cycle of 17 fifths tempered by 1/10 of "17-tET comma" temp17c11 (17): Cycle of 17 fifths tempered by 1/11 of "17-tET comma" temp17c12 (17): Cycle of 17 fifths tempered by 1/12 of "17-tET comma" temp17c13 (17): Cycle of 17 fifths tempered by 1/13 of "17-tET comma" temp17c14 (17): Cycle of 17 fifths tempered by 1/14 of "17-tET comma" temp17c15 (17): Cycle of 17 fifths tempered by 1/15 of "17-tET comma" temp17ebf (17): Cycle of 17 equal beating fifths temp17ebs (17): Cycle of 17 equal beating sevenths temp17fo2 (17): Fifth beats twice octave temp17nt (17): 17-tone temperament with 27/22 neutral thirds temp17s (17): Cycle of 17 fifths tempered by 2 schismas. Schulter, Tuning List 10-9-98 temp19d5 (19): Cycle of 19 thirds tempered by 1/5 small diesis. Third = 3\5 temp19ebf (19): Cycle of 19 equal beating fifths temp19ebmt (19): Cycle of 19 equal beating minor thirds temp19ebo (19): Cycle of 19 equal beating octaves in twelfth temp19ebt (19): Cycle of 19 equal beating thirds temp19k10 (19): Chain of 19 minor thirds tempered by 1/10 kleisma temp19k3 (19): Chain of 19 minor thirds tempered by 1/3 kleisma temp19k4 (19): Chain of 19 minor thirds tempered by 1/4 kleisma temp19k5 (19): Chain of 19 minor thirds tempered by 1/5 kleisma temp19k6 (19): Chain of 19 minor thirds tempered by 1/6 kleisma temp19k7 (19): Chain of 19 minor thirds tempered by 1/7 kleisma temp19k8 (19): Chain of 19 minor thirds tempered by 1/8 kleisma temp19k9 (19): Chain of 19 minor thirds tempered by 1/9 kleisma temp19lst (19): Cycle of 19 least squares thirds 5/4^5 = 3/2 temp19lst2 (19): Cycle of 19 least squares thirds 5/4, 3/2 (5), 6/5 (4) temp21ebs (21): Cycle of 21 equal beating sevenths temp22ebf (22): Cycle of 22 equal beating fifths temp22ebt (22): Cycle of 22 equal beating thirds temp22fo2 (22): Fifth beats twice opposite rate as octave temp23ebs (23): Cycle of 23 equal beating major sixths temp24ebaf (24): Cycle of 24 equal beating 11/8's temp24ebf (24): 24-tone ET with 23 equal beatings fifths. Fifth on 17 slightly smaller. temp25ebt (25): Cycle of 25 equal beating thirds temp26eb3 (26): Cycle of 26 fifths, 5/4 beats three times 3/2 temp26ebf (26): Cycle of 26 equal beating fifths temp26ebmt (26): Cycle of 26 equal beating minor thirds temp26ebs (26): Cycle of 26 equal beating sevenths temp27c8 (27): Cycle of 27 fifths tempered by 1/8 of difference between augm. 2nd and 5/4 temp27eb2 (27): Cycle of 27 fourths, 5/4 beats twice 4/3 temp28ebt (28): Cycle of 28 equal beating thirds temp29c14 (29): Cycle of 29 fifths 1/14 comma positive temp29ebf (29): Cycle of 29 equal beating fifths temp29fo (29): Fifth beats with opposite equal rate as octave temp31c51 (31): Cycle of 31 51/220-comma tempered fifths (twice diff. of 31-tET and 1/4-comma) temp31coh (31): Differential coherent 31-tone scale, interval=8, OdC, 2003 temp31eb1 (31): Cycle of 31 thirds, 3/2 beats equal 5/4. Third 1/18 synt. comma higher temp31eb1a (31): Cycle of 31 thirds, 5/4 beats equal 7/4 temp31eb2 (31): Cycle of 31 thirds, 3/2 beats twice 5/4 temp31eb2a (31): Cycle of 31 thirds, 5/4 beats twice 3/2 temp31eb2b (31): Cycle of 31 thirds, 5/4 beats twice 7/4 (7/4 beats twice 5/4 gives 31-tET) temp31ebf (31): Cycle of 31 equal beating fifths temp31ebf2 (31): Cycle of 31 fifths, 3/2 beats equal 7/4 temp31ebs (31): Cycle of 31 equal beating sevenths temp31ebs1 (31): Cycle of 31 sevenths, 3/2 beats equal 7/4. 17/9 schisma fifth temp31ebs2 (31): Cycle of 31 sevenths, 3/2 beats twice 7/4. Almost 31-tET temp31ebsi (31): Cycle of 31 equal beating major sixths temp31ebt (31): Cycle of 31 equal beating thirds temp31g3 (31): Wonder Scale, cycle of 31 sevenths tempered by 1/3 gamelan residue, s.wonder1 temp31g4 (31): Cycle of 31 sevenths tempered by 1/4 gamelan residue temp31g5 (31): Cycle of 31 sevenths tempered by 1/5 gamelan residue temp31g6 (31): Cycle of 31 sevenths tempered by 1/6 gamelan residue temp31g7 (31): Cycle of 31 sevenths tempered by 1/7 gamelan residue temp31h10 (31): Cycle of 31 fifths tempered by 1/10 Harrison's comma temp31h11 (31): Cycle of 31 fifths tempered by 1/11 Harrison's comma temp31h12 (31): Cycle of 31 fifths tempered by 1/12 Harrison's comma temp31h8 (31): Cycle of 31 fifths tempered by 1/8 Harrison's comma temp31h9 (31): Cycle of 31 fifths tempered by 1/9 Harrison's comma temp31ms (31): Cycle of 31 5th root of 5/4 chromatic semitones temp31mt (31): Cycle of 31 square root of 5/4 meantones temp31to (31): Third beats with opposite equal rate as octave temp31w10 (31): Cycle of 31 thirds tempered by 1/10 Wuerschmidt comma temp31w11 (31): Cycle of 31 thirds tempered by 1/11 Wuerschmidt comma temp31w12 (31): Cycle of 31 thirds tempered by 1/12 Wuerschmidt comma temp31w13 (31): Cycle of 31 thirds tempered by 1/13 Wuerschmidt comma temp31w14 (31): Cycle of 31 thirds tempered by 1/14 Wuerschmidt comma temp31w15 (31): Cycle of 31 thirds tempered by 1/15 Wuerschmidt comma, almost 31-tET temp31w8 (31): Cycle of 31 thirds tempered by 1/8 Wuerschmidt comma temp31w9 (31): Cycle of 31 thirds tempered by 1/9 Wuerschmidt comma temp32ebf (32): Cycle of 32 equal beating fifths temp33a12 (33): Cycle of 33 fifths tempered by 1/12 "11 fifths" comma temp34eb2a (34): Cycle of 34 thirds, 5/4 beats twice 3/2 temp34ebsi (34): Cycle of 34 equal beating major sixths temp34ebt (34): Cycle of 34 equal beating thirds temp34w10 (34): Cycle of 34 thirds tempered by 1/10 Wuerschmidt comma temp34w5 (34): Cycle of 34 thirds tempered by 1/5 Wuerschmidt comma temp34w6 (34): Cycle of 34 thirds tempered by 1/6 Wuerschmidt comma temp34w7 (34): Cycle of 34 thirds tempered by 1/7 Wuerschmidt comma temp34w8 (34): Cycle of 34 thirds tempered by 1/8 Wuerschmidt comma temp34w9 (34): Cycle of 34 thirds tempered by 1/9 Wuerschmidt comma temp35ebsi (35): Cycle of 35 equal beating major sixths temp37ebs (37): Cycle of 37 equal beating sevenths temp37ebt (37): Cycle of 37 equal beating thirds temp3ebt (3): Cycle of 3 equal beating thirds temp4ebmt (4): Cycle of 4 equal beating minor thirds temp4ebsi (4): Cycle of 4 equal beating major sixths temp53ebs (53): Cycle of 53 equal beating harmonic sevenths temp53ebsi (53): Cycle of 53 equal beating major sixths temp53ebt (53): Cycle of 53 equal beating thirds temp57ebs (57): Cycle of 57 equal beating harmonic sevenths temp59ebt (59): Cycle of 59 equal beating thirds temp5ebf (5): Cycle of 5 equal beating fifths temp5ebs (5): Cycle of 5 equal beating harmonic sevenths temp6 (6): Tempered wholetone scale with approximations to 5/4 (4), 7/5 (4) and 7/4 (1) temp65ebf (65): Cycle of 65 equal beating fifths temp65ebt (65): Cycle of 65 equal beating thirds temp6eb2 (6): Cycle of 6 equal beating 9/8 seconds temp6s (6): Cycle of 6 tempered harmonic sevenths, 6/5 and 4/3 minimax, Op de Coul, 2002 temp6teb (6): Cycle of 6 equal beating 6/5's in a twelfth temp7-5ebf (12): 7 equal beating fifths on white, 5 equal beating fifths on black temp7ebf (7): Cycle of 7 equal beating fifths temp7ebnt (7): Cycle of 7 equal beating 11/9 neutral thirds temp8eb3q (8): Cycle of 8 equal "beating" 12/11's temp9ebmt (9): Cycle of 9 equal beating 7/6 septimal minor thirds tenney_11 (11): Scale of James Tenney's "Spectrum II" for wind quintet tertiadia (12): Tertiadia 2048/2025 and 262144/253125 scale tertiadie (12): First Tertiadie 262144/253125 and 128/125 scale tet3a (8): Eight notes, two major one minor tetrad tetracot (27): tetracot temperament, g=176.28227, 5-limit tetragam-di (12): Tetragam Dia2 tetragam-enh (12): Tetragam Enharm. tetragam-hex (12): Tetragam/Hexgam tetragam-py (12): Tetragam Pyth. tetragam-slpe (12): Tetragam Slendro as 5-tET, Pelog-like pitches on C# E F# A B tetragam-slpe2 (12): Tetragam Slendro as 5-tET, Pelog-like pitches on C# E F# A B tetragam-sp (12): Tetragam Septimal tetragam-un (12): Tetragam Undecimal tetragam13 (12): Tetragam (13-tET) tetragam5 (12): Tetragam (5-tET) tetragam7 (12): Tetragam (7-tET) tetragam8 (12): Tetragam (8-tET) tetragam9a (12): Tetragam (9-tET) A tetragam9b (12): Tetragam (9-tET) B tetraphonic_31 (31): 31-tone Tetraphonic Cycle, conjunctive form on 5/4, 6/5, 7/6 and 8/7 tetratriad (9): 4:5:6 Tetratriadic scale tetratriad1 (9): 3:5:9 Tetratriadic scale tetratriad2 (9): 3:5:7 Tetratriadic scale thailand (7): Observed ranat tuning from Thailand, Helmholtz/Ellis p. 518, nr.85 thailand2 (7): Observed ranat t'hong tuning, Helmholtz/Ellis p. 518 thailand3 (7): Observed tak'hay tuning. Helmholtz, p. 518 thailand4 (15): Khong mon (bronze percussion vessels) tuning, Gemeentemuseum Den Haag 1/1=465 thirds (12): Major and minor thirds parallellogram thomas (12): Tuning of the Thomas/Philpott organ, Gereformeerde Kerk, St. Jansklooster tiby1 (7): Tiby's 1st Byzantine Liturgical genus, 12 + 13 + 3 parts tiby2 (7): Tiby's second Byzantine Liturgical genus, 12 + 5 + 11 parts tiby3 (7): Tiby's third Byzantine Liturgical genus, 12 + 9 + 7 parts tiby4 (7): Tiby's fourth Byzantine Liturgical genus, 9 + 12 + 7 parts todi_av (7): Average of 8 interpretations of raga Todi, in B. Bel, 1988. tonos15_pis (15): Diatonic Perfect Immutable System in the new Tonos-15 tonos17_pis (15): Diatonic Perfect Immutable System in the new Tonos-17 tonos19_pis (15): Diatonic Perfect Immutable System in the new Tonos-19 tonos21_pis (15): Diatonic Perfect Immutable System in the new Tonos-21 tonos23_pis (15): Diatonic Perfect Immutable System in the new Tonos-23 tonos25_pis (15): Diatonic Perfect Immutable System in the new Tonos-25 tonos27_pis (15): Diatonic Perfect Immutable System in the new Tonos-27 tonos29_pis (15): Diatonic Perfect Immutable System in the new Tonos-29 tonos31_pis (15): Diatonic Perfect Immutable System in the new Tonos-31 tonos31_pis2 (15): Diatonic Perfect Immutable System in the new Tonos-31B tonos33_pis (15): Diatonic Perfect Immutable System in the new Tonos-33 top31 (31): Top temperament, 11-limit, {225/224, 385/384, 1331/1323}, Gene Ward Smith trab19 (19): Diamond {1,3,5,45,75,225} trab19a (19): Diamond {1,3,9,15,675} tranh (5): Bac Dan Tranh scale, Vietnam tranh2 (5): Dan Ca Dan Tranh Scale tranh3 (6): Sa Mac Dan Tranh scale tri12-1 (12): 12-tone Tritriadic of 7:9:11 tri12-2 (12): 12-tone Tritriadic of 6:7:9 tri19-1 (19): 3:5:7 Tritriadic 19-Tone Matrix tri19-2 (19): 3:5:9 Tritriadic 19-Tone Matrix tri19-3 (19): 4:5:6 Tritriadic 19-Tone Matrix tri19-4 (19): 4:5:9 Tritriadic 19-Tone Matrix tri19-5 (19): 5:7:9 Tritriadic 19-Tone Matrix tri19-6 (19): 6:7:8 Tritriadic 19-Tone Matrix tri19-7 (19): 6:7:9 Tritriadic 19-Tone Matrix tri19-8 (19): 7:9:11 Tritriadic 19-Tone Matrix tri19-9 (19): 4:5:7 Tritriadic 19-Tone Matrix triang11 (15): 11-limit triangular diamond lattice with 64/63 intervals removed triaphonic_12 (12): 12-tone Triaphonic Cycle, conjunctive form on 4/3, 5/4 and 6/5 triaphonic_17 (17): 17-tone Triaphonic Cycle, conjunctive form on 4/3, 7/6 and 9/7 trichord7 (11): Trichordal undecatonic, 7-limit tricot (53): Tricot temperament, g=565.988015, 5-limit tritriad (7): Tritriadic scale of the 10:12:15 triad, natural minor mode tritriad10 (7): Tritriadic scale of the 10:14:15 triad tritriad11 (7): Tritriadic scale of the 11:13:15 triad tritriad13 (7): Tritriadic scale of the 10:13:15 triad tritriad14 (7): Tritriadic scale of the 14:18:21 triad tritriad18 (7): Tritriadic scale of the 18:22:27 triad tritriad22 (7): Tritriadic scale of the 22:27:33 triad tritriad26 (7): Tritriadic scale of the 26:30:39 triad tritriad3 (7): Tritriadic scale of the 3:5:7 triad. Possibly Mathews's 3.5.7a tritriad32 (7): Tritriadic scale of the 26:32:39 triad tritriad3c (7): From 1/1 7/6 7/5, a variant of the 3.5.7 triad tritriad3d (7): From 1/1 7/6 5/3, a variant of the 3.5.7 triad tritriad5 (7): Tritriadic scale of the 5:7:9 triad. Possibly Mathews's 5.7.9a. tritriad68 (7): Tritriadic scale of the 6:7:8 triad tritriad68i (7): Tritriadic scale of the subharmonic 6:7:8 triad tritriad69 (7): Tritriadic scale of the 6:7:9 triad, septimal natural minor tritriad7 (7): Tritriadic scale of the 7:9:11 triad tritriad9 (7): Tritriadic scale of the 9:11:13 triad tsjerepnin (9): Scale from Ivan Tsjerepnin's Santur Opera (1977) & suite from it Santur Live! tsuda13 (12): Mayumi Tsuda's Harmonic-13 scale. 1/1=440 Hz. tuneable3 (101): Marc Sabat, 3 octaves of intervals tuneable by ear tuners1 (12): The Tuner's Guide well temperament no. 1 (1840) tuners2 (12): The Tuner's Guide well temperament no. 2 (1840) tuners3 (12): The Tuner's Guide well temperament no. 3 (1840) turkish (7): Turkish, 5-limit from Palmer on a Turkish music record, harmonic minor inverse turkish_24 (24): Ra'uf Yekta, 24-tone Pythagorean Turkish Theoretical Gamut, 1/1=D (perde yegah) at 294 Hz turkish_24a (24): Turkish gamut with schismatic simplifications turkish_41 (41): Abdïlkadir Tïre and M. Ekrem Karadeniz theoretical Turkish gamut turkish_41a (41): Karadeniz's theoretical Turkish gamut, quantized to subset of 53-tET turkish_aeu (24): Arel-Ezgi-Uzdilek (AEU) 24 tone theoretical system turkish_bagl (17): Ratios of the 17 frets on the neck of "Baglama" ("saz") according to Yalïïn Tura two29 (58): Two 29-tET scales 25 cents shifted, many near just intervals two29a (58): Two 29-tET scales 15.826 cents shifted, 13-limit chords, Mystery temperament, Gene Ward Smith xenakis_chrom (7): Xenakis's Byzantine Liturgical mode, 5 + 19 + 6 parts xenakis_diat (7): Xenakis's Byzantine Liturgical mode, 12 + 11 + 7 parts xenakis_schrom (7): Xenakis's Byzantine Liturgical mode, 7 + 16 + 7 parts xenoga24 (24): M. Schulter, 3+7 ratios Xeno-Gothic adaptive tuning (keyboards 64:63 apart) xylophone2 (10): African Yaswa xylophones (idiophone; calbash resonators with membrane) xylophone3 (5): African Banyoro xylophone (idiophone; loose log) xylophone4 (10): African Bapare xylophone (idiophone, loose-log) zalzal (7): Tuning of popular flute by Al Farabi & Zalzal. First tetrachord is modern Rast zalzal2 (7): Zalzal's Scale, a medieval Islamic with Ditone Diatonic & 10/9 x 13/12 x 72/65 zarlino (7): Ptolemy's Intense Diatonic Systonon, also Zarlino's scale zarlino2 (16): 16-note choice system of Zarlino, Sopplimenti musicali (1588) zartehijaz1 (9): Scale from Zarlino temperament extraordinaire -- lower Hijaz tetrachord zesster_a (8): Harmonic six-star, group A, from Fokker zesster_b (8): Harmonic six-star, group B, from Fokker zesster_c (8): Harmonic six-star, group C on Eb, from Fokker zesster_mix (16): Harmonic six-star, groups A, B and C mixed, from Fokker zest24 (24): Zarlino Extraordinaire Spectrum Temperament (two circles at ~50.28c apart) zir_bouzourk (6): Zirafkend Bouzourk (IG #3, DF #9), from both Rouanet and Safi al-Din zwolle (12): Henri Arnaut De Zwolle. Pythagorean on G flat. zwolle2 (12): Henri Arnaut De Zwolle's modified meantone tuning (c. 1440) yarman12 (12): Detempered Yarman 13-limit, [<1 1 -20 -6 -3 -1|, <0 1 38 15 11 8|] yarman12_80 (12): Ozan Yarman MOS, 80-et version yarman17 (17): 80-et commas 13-limit detempering of a chain of 16 fifths yarman_ney-ahengs (12): Well Temperament for piano by Ozan Yarman from Ney Ahengs yasser_6 (6): Yasser Hexad, 6 of 19 as whole tone scale yasser_diat (12): Yasser's Supra-Diatonic, the flat notes are V,W,X,Y,and Z yasser_ji (12): Yasser's just scale, 2 Yasser hexads, 121/91 apart yekta (12): Rauf Yekta's 12-tone tuning suggested in 1922 Lavignac Music Encyclopedia young-g (28): Gayle Young's Harmonium, see PNM 26(2): 204-212 (1988) young-lm_guitar (12): LaMonte Young, Tuning of For Guitar '58. 1/1 March '92, inv.of Mersenne lute 1 young-lm_piano (12): LaMonte Young's Well-Tempered Piano young-w10 (10): William Lyman Young 10 out of 24-tET (1961) young-w14 (14): William Lyman Young 14 out of 24-tET (1961) young-wt (7): William Lyman Young "exquisite 3/4 tone Hellenic Lyre" dorian young (12): Thomas Young well temperament (1807), also Luigi Malerbi nr.2 (1794) young2 (12): Thomas Young well temperament no.2 (1799) yugo_bagpipe (12): Yugoslavian Bagpipe yves (7): St Yves's scale II from Jocelyn Godwin, "Music and the Occult", 1995. saba_sup (8): Superparticular version of maqam Sab sabagh (24): Twfiq Al-Sabagh, Arabic master musical scale in 53-tET (1954) sabbagh (7): Tawfiq as-Sabbagh, a composer from Syria. 1/1=G safi_diat (7): Safi al-Din's Diatonic, also the strong form of Avicenna's 8/7 diatonic safi_diat2 (7): Safi al-Din's 2nd Diatonic, a 3/4 tone diatonic like Ptolemy's Equable Diatonic safi_major (6): Singular Major (DF #6), from Safi al-Din, strong 32/27 chromatic salinas_19 (19): Salinas' enharmonic tuning for his 19-tone instr. "instrumentum imperfectum" salinas_24 (24): Salinas enharmonic system "instrumentum perfectum". Subset of Mersenne salinas_enh (7): Salinas's and Euler's enharmonic salunding (5): Gamelan slunding, Kengetan, South-Bali. 1/1=378 Hz sankey (12): John Sankey's Scarlatti tuning, personal evaluation based on d'Alembert's santur1 (8): Persian santur tuning. 1/1=E santur2 (8): Persian santur tuning. 1/1=E sanza (8): African N'Gundi Sanza (idiophone; set of lamellas, thumb-plucked) sanza2 (7): African Baduma Sanza (idiophone, like mbira) sauveur (12): Sauveur's tempered system of the harpsichord. Traitï (1697) sauveur2 (12): Sauveur's Syste^me Chromatique des Musiciens (Memoires 1701), 12 out of 55. sauveur_17 (17): Sauveur's oriental system, aft. Kitab al-adwar (Bagdad 1294) by Safi al-Din sauveur_ji (12): Aplication des sons harmoniques aux jeux d'orgues (1702) (PB 81/80 & 128/125) savas_bardiat (7): Savas's Byzantine Liturgical mode, 8 + 12 + 10 parts savas_barenh (7): Savas's Byzantine Liturgical mode, 8 + 16 + 6 parts savas_chrom (7): Savas's Chromatic, Byzantine Liturgical mode, 8 + 14 + 8 parts savas_diat (7): Savas's Diatonic, Byzantine Liturgical mode, 10 + 8 + 12 parts savas_palace (7): Savas's Byzantine Liturgical mode, 6 + 20 + 4 parts scalatron (19): Scalatron (tm) 19-tone scale, see manual, 1974 scheengaas (12): Scheengaas' variation scheffer (12): H.Th. Scheffer (1748) modified 1/5-comma temperament, Sweden schidlof (21): Schidlof schillinger (36): Joseph Schillinger's double equal temperament, p.664 Mathematical Basis... schis41 (41): 41&53 <<1 -8 -14 23 -15 -25 33 -10 81 113|| schisynch17 (17): fifth satisfies f^9 + f^8 - 64 = 0 schlick (12): Reconstructed temp. A. Schlick, Spiegel d. Orgelmacher und Organisten (1511) schlick2 (12): Schlick's temperament reconstructed by F.J. Ratte (1991) schlick3 (12): Possible well-tempered interpretation of 1555 tuning, Margo Schulter schlick4 (12): Another reconstructed Schlick's modified meantone (Poletti?) scholz (8): Simple Tune #1 Carter Scholz scholz_epi (40): Carter Scholz, Epimore schulter (12): Margo Schulter's 5-limit JI virt. ET, "scintilla of Artusi" tempered 22-08-98 schulter_17 (17): Neo-Gothic well-temperament (14:11, 9:7 hypermeantone fifths) TL 04-09-2000 schulter_24 (24): Rational intonation (RI) scale with some "17-ish" features (24 notes) schulter_cart34 (34): "Carthesian tuning" with two 17-tET chains 55.106 cents apart schulter_diat7 (7): Diatonic scale, symmetrical tetrachords based on 14/11 and 13/11 triads schulter_ham (17): New rational tuning of "Hammond organ type", TL 01-03-2002 schulter_jot17a (17): Just octachord tuning -- 4:3-9:8-4:3 division, 17 steps (7 + 3 + 7), Bb-Bb schulter_jot17bb (17): "Just Octachord Tuning" (Bb-Eb, F-Bb) -- 896:891 divided into 1792:1787:1782 schulter_jwt17 (17): "Just well-tuned 17" circulating system schulter_lin76-34 (24): Two 12-note chains, ~704.160 cents, 34 4ths apart (32 4ths = 7:6), TL 29-11-02 schulter_pel (5): Just pelog-style Phrygian pentatonic schulter_pepr (24): Peppermint 24: Wilson/Pepper apotome/limma=Phi, 2 chains spaced for pure 7:6 schulter_qcm62a (62): 1/4-comma meantone, two 31-notes at 1/4-comma (Vicentino-like system) schulter_qcmlji24 (24): 24-note adaptive JI (Eb-G#/F'-A#') for Lasso's Prologue to _Prophetiae_ schulter_qcmqd8_4 (12): F-C# in 1/4-comma meantone, other 5ths ~4.888 cents wide or (2048/2025)^(1/4) schulter_sq (24): "Sesquisexta" tuning, two 12-tone Pyth. manuals a 7/6 apart. TL 16-5-2001 schulter_tedorian (7): Eb Dorian in temperament extraordinaire -- neo-medieval style schulter_zarte84 (12): Temperament extraordinaire, Zarlino's 2/7-comma meantone (F-C#) schulter_zarte84n (12): Zarlino temperament extraordinaire, 1024-tET mapping scotbag (7): Scottish bagpipe tuning scotbag2 (7): Scottish bagpipe tuning 2 scotbag3 (7): Scottish bagpipe tuning 3 scotbag4 (7): Scottish Higland Bagpipe by Macdonald, Edinburgh. Helmholtz/Ellis p. 515, nr.52 scottd1 (12): Dale Scott's temperament 1, TL 9-6-1999 scottd2 (12): Dale Scott's temperament 2, TL 9-6-1999 scottd3 (12): Dale Scott's temperament 3, TL 9-6-1999 scottd4 (12): Dale Scott's temperament 4, TL 9-6-1999 scottj (4): Jeff Scott's "seven and five" tuning, fifth-repeating. TL 20-04-99 scottj2 (19): Jeff Scott's "just tritone/13" tuning. TL 17-03-2001 secor12_1 (12): George Secor's 12-tone temperament ordinaire #1, proportional beating secor12_2 (12): George Secor's closed 12-tone well-temperament #2, with 7 just fifths secor12_3 (12): George Secor's closed 12-tone temperament #3 with 5 meantone, 3 just, and 2 wide fifths secor17htt1 (17): George Secor's 17-tone high-tolerance temperament subset #1 on C (5/4 & 7/4 exact) secor17htt2 (17): George Secor's 17-tone high-tolerance temperament subset #2 on Eo (5/4 & 7/4 exact) secor17htt3 (17): George Secor's 17-tone high-tolerance temperament subset #3 on G (5/4 & 7/4 exact) secor17htt4 (17): George Secor's 17-tone high-tolerance temperament subset #4 on Bo (5/4 & 7/4 exact) secor17wt (17): George Secor's well temperament with 5 pure 11/7 and 3 near just 11/6 secor19wt (19): George Secor's 19-tone well temperament with ten 5/17-comma fifths secor19wt1 (19): George Secor's 19-tone proportional-beating (5/17-comma) well temperament (v.1) secor19wt2 (19): George Secor's 19-tone proportional-beating (5/17-comma) well temperament (v.2) secor1_4tx (12): George Secor's rational 1/4-comma temperament extraordinaire secor1_5tx (12): George Secor's 1/5-comma temperament extraordinaire (ratios supplied by G. W. Smith) secor1_5wt (12): George Secor's 1/5-comma well-temperament (ratios supplied by G. W. Smith) secor1_7wt (12): George Secor's 1/7-comma well-temperament (ratios supplied by G. W. Smith) secor22_19p3 (22): George Secor's 19+3 well temperament with ten ~5/17-comma (equal-beating) fifths and 3 pure 9:11. TL 28-6-2002,26-10-2006. Aux=1,10,19 secor22_ji29 (22): George Secor's 22-tone just intonation (29-limit otonality on 4/3) secor29htt (29): George Secor's 29-tone 13-limit high-tolerance temperament (5/4 & 7/4 exact) secor2_11wt (12): George Secor's rational 2/11-comma well-temperament secor41htt (41): George Secor's 13-limit high-tolerance temperament superset (5/4 & 7/4 exact) secor5_23tx (12): George Secor's rational 5/23-comma temperament extraordinaire secor5_23wt (12): George Secor's rational 5/23-comma proportional-beating well-temperament secor7p (7): George Secor's pelog-like MOS with near just 11:13:15:19 tetrads (1979) secor_vrwt (12): George Secor's Victorian rational well-temperament (based on Ellis #2) secor_wt1-7 (12): George Secor's 1/7-comma well-temperament secor_wt10 (12): George Secor's 12-tone well-temperament, proportional beating secor_wtpb-24a (12): George Secor's 24-triad proportional-beating well-temperament (24a) secor_wtpb-24b (12): George Secor's 24-triad proportional-beating well-temperament (24b) segah (7): Arabic SEGAH (Dudon) Two 4 + 3 + 3 tetrachords segah2 (7): Iranian mode Segah from C segah_rat (7): Rationalized Arabic Segïh seidel974 (32): Dave Seidel, Base 9:7:4 Symmetry, scale for Passacaglia and Fugue State (2005) seikilos (12): Seikilos Tuning sekati1 (7): Gamelan sekati from Sumenep, East-Madura. 1/1=244 Hz. sekati2 (7): Gamelan Kyahi Sepuh from kraton Solo. 1/1=216 Hz. sekati3 (7): Gamelan Kyahi Henem from kraton Solo. 1/1=168.5 Hz. sekati4 (7): Gamelan Kyahi Guntur madu from kraton Jogya. 1/1=201.5 Hz. sekati5 (7): Gamelan Kyahi Naga Ilaga from kraton Jogya. 1/1=218.5 Hz. sekati6 (7): Gamelan Kyahi Munggang from Paku Alaman, Jogya. 1/1=199.5 Hz. sekati7 (7): Gamelan of Sultan Anom from Cheribon. 1/1=282 Hz. sekati8 (7): The old Sultans-gamelan Kyahi Suka rame from Banten. 1/1=262.5 Hz. sekati9 (7): Gamelan Sekati from Katjerbonan, Cheribon. 1/1=292 Hz. selisir (5): Gamelan semara pagulingan, Bali. Pagan Kelod selisir2 (5): Gamelan semara pagulingan, Bali. Kamasan selisir3 (5): Gamelan gong, Pliatan, Bali. 1/1=280 Hz, McPhee, 1966 selisir4 (5): Gamelan gong, Apuan, Bali. 1/1=285 Hz. McPhee, 1966 selisir5 (5): Gamelan gong, Sayan, Bali. 1/1=275 Hz. McPhee, 1966 selisir6 (5): Gamelan gong, Gianyar, Bali. 1/1=274 Hz. McPhee, 1966 semipor1 (8): First 16/15&250/243 = 648/625&250/243 scale semisixths (46): Semisixths temperament, 13-limit, g=443.0 scalamakesrc2semisixths_8 (8): 8-note MOS of Semisixths [7, 9, 13, -2, 1, 5] temperament, TOP tuning semisuper (34): Semisuper temperament, g=71.146064, p=600, 5-limit semithirds (118): Semithirds temperament, g=193.199615, 5-limit sensisynch19 (19): Sensi[19] in synch (brat=-1) tuning, generator ~162/125 satisfies g^9-g^7-4=0 serre_enh (7): Dorian mode of the Serre's Enharmonic sev-elev (12): "Seven-Eleven Blues" of Pitch Palette sha (24): Three chains of sqrt(3/2) separated by 10/7 shahin (18): Mohajeri Shahin Iranian style scale, TL 9-4-2006 shahin_wt (12): Mohajeri Shahin, well temperament, TL 28-12-2006 shalfun (24): d'Erlanger vol.5, p.40. After Alexandre ^Salfun (Chalfoun) sharm1c-conm (7): Subharm1C-ConMixolydian sharm1c-conp (7): Subharm1C-ConPhryg sharm1c-dor (8): Subharm1C-Dorian sharm1c-lyd (8): Subharm1C-Lydian sharm1c-mix (7): Subharm1C-Mixolydian sharm1c-phr (7): Subharm1C-Phrygian sharm1e-conm (7): Subharm1E-ConMixolydian sharm1e-conp (7): Subharm1E-ConPhrygian sharm1e-dor (8): Subharm1E-Dorian sharm1e-lyd (8): Subharm1E-Lydian sharm1e-mix (7): Subharm1E-Mixolydian sharm1e-phr (7): Subharm1E-Phrygian sharm2c-15 (7): Subharm2C-15-Harmonia sharm2c-hypod (8): SHarm2C-Hypodorian sharm2c-hypol (8): SHarm2C-Hypolydian sharm2c-hypop (8): SHarm2C-Hypophrygian sharm2e-15 (7): Subharm2E-15-Harmonia sharm2e-hypod (8): SHarm2E-Hypodorian sharm2e-hypol (8): SHarm2E-Hypolydian sharm2e-hypop (8): SHarm2E-Hypophrygian sherwood (12): Sherwood's improved meantone temperament shrutar (22): Paul Erlich's Shrutar tuning (from 9th fret) tempered with Dave Keenan shrutar_temp (22): Shrutar temperament, 11-limit, g=52.474, 1/2 oct. shrutart (22): Paul Erlich's 'Shrutar' tuning tempered by Dave Keenan, TL 29-12-2000 siamese (12): Siamese Tuning, after Clem Fortuna's Microtonal Guide silbermann1 (12): Gottfried Silbermann's temperament nr. 1 silbermann2 (12): Gottfried Silbermann's temperament nr. 2, 1/6 Pyth. comma meantone silbermann2a (12): Modified Silbermann's temperament nr. 2, also used by Hinsz in Midwolda silver (12): Equal beating chromatic scale, A.L.Leigh Silver JASA 29/4, 476-481, 1957 silver_10 (10): Ten-tone MOS from 350.9 cents silver_11 (11): Eleven-tone MOS from 1+sqr(2), 1525.864 cents silver_11a (11): Eleven-tone MOS from 317.17 cents silver_11b (11): Eleven-tone MOS from 331.67 cents silver_7 (7): Seven-tone MOS from 1+sqr(2), 1525.864 cents silver_8 (8): Eight-tone MOS from 273.85 cents silver_9 (9): Nine-tone MOS from 280.61 cents silvermean (7): First 6 approximants to the Silver Mean, 1+ sqr(2) reduced by 2/1 simonton (12): Simonton Integral Ratio Scale, JASA 25/6 (1953): A new integral ratio scale sims (18): Ezra Sims' 18-tone mode sims2 (20): Sims II sims_24 (24): See his article, Reflections on This and That, 1991 p.93-106 sin (21): 1/sin(2pi/n), n=4..25 sinemod12 (19): Sine modulated F=12, A=-.08203754 sinemod8 (19): Sine modulated F=8, A=.11364155. Deviation minimal3/2, 4/3, 5/4, 6/5, 5/3, 8/5 singapore (7): An observed xylophone tuning from Singapore sintemp6 (12): Sine modulated fifths, A=1/6 Pyth, one cycle, f0=-90 degrees sintemp6a (12): Sine modulated fifths, A=1/12 Pyth, one cycle, f0= D-A sintemp_19 (19): Sine modulated thirds, A=7.366 cents, one cycle over fifths, f0=90 degrees sintemp_7 (7): Sine modulated fifths, A=8.12 cents, one cycle, f0=90 degrees slen_pel (12): Pelog white, Slendro black slen_pel16 (12): 16-tET Slendro and Pelog slen_pel23 (12): 23-tET Slendro and Pelog slen_pel_jc (12): Slendro/JC PELOG S1c,P1c#,S2d,eb,P2e,S3f,P3f#,S4g,ab,P4a,S5bb,P5b slen_pel_schmidt (12): Dan Schmidt (Pelog white, Slendro black) slendro (5): Observed Javanese Slendro scale, Helmholtz/Ellis p. 518, nr.94 slendro10 (5): Low gender from Singaraja (banjar Lod Peken), Bali. 1/1=172 Hz. McPhee, 1966. slendro11 (5): Low gender from Sawan, Bali. 1/1=167.5 Hz. McPhee, 1966. slendro2 (5): Gamelan slendro from Ranchaiyuh, distr. Tanggerang, Batavia. 1/1=282.5 Hz slendro3 (5): Gamelan kodok ngorek. 1/1=270 Hz slendro4 (5): Low gender in saih lima from Kuta, Bali. 1/1=183 Hz. McPhee, 1966 slendro5_1 (5): A slendro type pentatonic which is based on intervals of 7; from Lou Harrison slendro5_2 (5): A slendro type pentatonic which is based on intervals of 7, no. 2 slendro5_4 (5): A slendro type pentatonic which is based on intervals of 7, no. 4 slendro6 (5): Low gender from Klandis, Bali. 1/1=180 Hz. McPhee, 1966 slendro8 (5): Low gender from Tabanan, Bali. 1/1=179 Hz. McPhee, 1966. slendro9 (5): Low gender from Singaraja (banjar Panataran), Bali. 1/1=175 Hz. McPhee, 1966. slendro_7_1 (5): Septimal Slendro 1, From HMSL Manual, also Lou Harrison, Jacques Dudon slendro_7_2 (5): Septimal Slendro 2, From Lou Harrison, Jacques Dudon's APTOS slendro_7_3 (5): Septimal Slendro 3, Harrison, Dudon, called "MILLS" after Mills Gamelan slendro_7_4 (5): Septimal Slendro 4, from Lou Harrison, Jacques Dudon, called "NAT" slendro_7_5 (5): Septimal Slendro 5, from Jacques Dudon slendro_7_6 (5): Septimal Slendro 6, from Robert Walker slendro_a1 (5): Dudon's Slendro A1, "Seven-Limit Slendro Mutations", 1/1 8:2'94 hexany 1.3.7.21 slendro_a2 (5): Dudon's Slendro A2 from "Seven-Limit Slendro Mutations", 1/1 8:2 Jan 1994 slendro_alv (5): Bill Alves, slendro for Gender Barung, 1/1 vol.9 no.4, 1997. 1/1=282.86 slendro_ang (5): Gamelan Angklung Sangsit, North Bali. 1/1=294 Hz slendro_av (5): Average of 30 measured slendro gamelans, W. Surjodiningrat et al., 1993. slendro_dudon (5): Dudon's Slendro from "Fleurs de lumie`re" slendro_gum (5): Gumbeng, bamboo idiochord from Banyumas. 1/1=440 Hz slendro_ky1 (5): Kyahi Kanyut Me`sem slendro, Mangku Nagaran, Solo. 1/1=291 Hz slendro_ky2 (5): Kyahi Pengawe' sari, Paku Alaman, Jogya. 1/1=295 Hz slendro_laras (7): Lou Harrison, gamelan "Si Betty" slendro_m (5): Dudon's Slendro M from "Seven-Limit Slendro Mutations", 1/1 8:2 Jan 1994 slendro_madu (5): Sultan's gamelan Madoe kentir, Jogjakarta, Jaap Kunst slendro_mat (12): Dudon's Slendro Matrix from "Seven-Limit Slendro Mutations", 1/1 8:2 Jan 1994 slendro_pa (5): "Blown fifth" primitive slendro, von Hornbostel slendro_pas (5): Gamelan slendro of regent of Pasoeroean, Jaap Kunst slendro_pb (5): "Blown fifth" medium slendro, von Hornbostel slendro_pc (5): "Blown fifth" modern slendro, von Hornbostel slendro_pliat (9): Gender wayang from Pliatan, South Bali (Slendro), 1/1=305.5 Hz slendro_q13 (5): 13-tET quasi slendro, Blackwood slendro_s1 (5): Dudon's Slendro S1 from "Seven-Limit Slendro Mutations", 1/1 8:2 Jan 1994 slendro_s2 (5): Dudon's Slendro S2 slendro_udan (5): Slendro Udan Mas (approx) slendro_wolf (5): Daniel Wolf's slendro. Tuning List 30 5 1997 slendrob1 (5): Gamelan miring of Musadikrama, desa Katur, Bajanegara. 1/1=434 Hz slendrob2 (5): Gamelan miring from Bajanegara. 1/1=262 Hz slendrob3 (5): Gamelan miring from Ngumpak, Bajanegara. 1/1=266 Hz slendroc1 (5): Kyahi Kanyut mesem slendro (Mangku Nagaran Solo). 1/1=291 Hz slendroc2 (5): Kyahi Pengawe sari (Paku Alaman, Jogja). 1/1=295 Hz. slendroc3 (5): Gamelan slendro of R.M. Jayadipura, Jogja. 1/1=231 Hz slendroc4 (5): Gamelan slendro, Rancha iyuh, Tanggerang, Batavia. 1/1=282.5 Hz slendroc5 (5): Gender wayang from Pliatan, South Bali. 1/1=611 Hz slendroc6 (10): from William Malm: Music Cultures of the Pacific, the Near East and Asia. slendrod1 (5): Gender wayang from Ubud (S. Bali). 1/1=347 Hz smith_eh (12): Robert Smith's Equal Harmony temperament (1749) smith_mq (12): Robert Smith approximation of quarter comma meantone fifth scalamakesrc2smithgw-ball (38): Ball 2 around tetrad lattice hole smithgw46 (8): Gene Ward Smith 46-tET subset "Star" smithgw46a (8): 46-tET version of "Star", alternative version smithgw72a (11): Gene Ward Smith 72-tET subset, TL 04-01-2002 smithgw72c (9): Gene Ward Smith 72-tET subset, TL 04-01-2002 smithgw72d (8): Gene Ward Smith 72-tET subset, TL 04-01-2002 smithgw72e (8): Gene Ward Smith 72-tET subset, TL 04-01-2002 smithgw72f (5): Gene Ward Smith 72-tET subset, TL 04-01-2002 smithgw72g (5): Gene Ward Smith 72-tET subset, TL 04-01-2002 smithgw72h (7): Gene Ward Smith 72-tET subset, TL 09-01-2002 smithgw72i (12): Gene Ward Smith 72-tET subset version of Duodene, TL 02-06-2002 smithgw72j (10): {225/224, 441/440} tempering of decad, 72-et version (2002) smithgw84 (9): Gene Ward Smith 84-tET subset, 11-limit temperament "Orwell", 2002 smithgw_18 (18): Gene Ward Smith chord analogue to periodicity blocks, TL 12-07-2002 smithgw_21 (21): Gene Ward Smith symmetrical 7-limit JI version of Blackjack, TL 10-5-2002 smithgw_45 (45): Gene Ward Smith large limma repeating 5-tone MOS smithgw_58 (58): Gene Ward Smith 58-tone epimorphic superset of Partch's 43-tone scale smithgw_9 (9): Gene Ward Smith "Miracle-Magic square" tuning, genus chromaticum of ji_12a smithgw_al-baked (12): Baked alaska, with beat ratios of 2 and 3/2 smithgw_al-fried (12): Fried alaska, with octave-fifth brats of 1 and 2 smithgw_asbru (12): Modified bifrost (2003) smithgw_bifrost (12): Six meantone fifths, four pure, two of sqrt(2048/2025 sqrt(5)) smithgw_cauldron (12): Circulating temperament with two pure 9/7 thirds smithgw_ck (72): Catakleismic temperament, g=316.745, 11-limit smithgw_decab (10): (10/9) <==> (16/15) transform of decaa smithgw_decac (10): inversion of decaa smithgw_decad (10): inversion of decab smithgw_diff13 (13): mod 13 perfect difference set, 7-limit smithgw_dwarf6_7 (6): Dwarf(<6 10 14 17|) smithgw_exotic1 (12): Exotic temperament featuring four pure 14/11 thirds and two pure fifths smithgw_glumma (12): Gene Smith's Glumma scale, 7-limit, 2002 smithgw_gm (41): Gene Ward Smith "Genesis Minus" periodicity block smithgw_graileq (12): 56% RMS grail + 44% JI grail smithgw_grailrms (12): RMS optimized Holy Grail smithgw_hahn12 (12): Hahn-reduced 12 note scale, Fokker block 225/224, 126/125, 64/63 smithgw_hahn15 (15): Hahn-reduced 15 note scale smithgw_hahn16 (16): Hahn-reduced 16 note scale smithgw_hahn19 (19): Hahn-reduced 19 note scale smithgw_hahn22 (22): Hahn-reduced 22 note scale smithgw_indianred (22): 32805/32768 Hahn-reduced smithgw_klv (15): Variant of kleismic with 9/7 thirds, g=316.492 smithgw_meandin (12): Gene Smith, inverted detempered 7-limit meantone smithgw_meanred (12): 171-et Hahn reduced rational Meantone[12] smithgw_meantune (16): Meantune scale/temperament, Gene Ward Smith, 2003 smithgw_mir22 (22): 11-limit Miracle[22] smithgw_mmt (12): Modified meantone with 5/4, 14/11 and 44/35 major thirds, TL 17-03-2003 smithgw_modmos12a (12): A 12-note modmos in 50-et meantone smithgw_octoid (48): Octoid temperament, g=16.096, oct=1/8, 11-limit smithgw_orw18r (18): Rational version of two cycles of 9-tone "Orwell" smithgw_pel1 (12): 125/108, 135/128 periodicity block no. 1 smithgw_pel2 (12): 125/108, 135/128 periodicity block no. 2 smithgw_pel3 (12): 125/108, 135/128 periodicity block no. 3 smithgw_pk (15): Parakleismic temperament, g=315.263, 5-limit smithgw_pris (12): optimized (15/14)^3 (16/15)^4 (21/20)^3 (25/24)^2 scale smithgw_prisa (12): optimized (15/14)^3 (16/15)^4 (21/20)^3 (25/24)^2 scale smithgw_pum13marv (13): pum13 marvel tempered and in epimorphic order smithgw_qm3a (10): Qm(3) 10-note quasi-miracle scale, mode A, 72-tET, TL 04-01-2002 smithgw_qm3b (10): Qm(3) 10-note quasi-miracle scale, mode B smithgw_ragasyn1 (12): Ragasyn 6561/6250 81/80 scale smithgw_rainbow (12): Circulating 1/4-comma meantone, Gene Ward SMith smithgw_ratwell (12): 7-limit rational well-temperament smithgw_ratwolf (12): Eleven fifths of (418/5)^(1/11) and one 20/13 wolf, G.W. Smith 2003 smithgw_rectoo (12): Hahn-reduced circle of fifths via <12 19 27 34| kernel smithgw_sc19 (19): Fokker block from commas <81/80, 78732/78125>, Gene Ward Smith 2002 smithgw_sch13 (29): 13-limit schismic temperament, g=704.3917, TL 31-10-2002 smithgw_sch13a (29): 13-limit schismic temperament, g=702.660507, TL 31-10-2002 smithgw_scj22a (22): 225/224 ^ 15625/15552 = [6,5,22,37,-18,-6] catakleismic smithgw_scj22b (22): 5120/5103 ^ 225/224 = [1,-8,-14,-10,25,-15] schismic candidate smithgw_scj22c (22): 225/224 ^ 65625/65536 = [7,-3,827,7,-21] orwell candidate smithgw_secab (10): {126/125, 176/175} tempering of decab, 328-et version smithgw_secac (10): {126/125, 176/175} tempering of decac, 328-et version smithgw_secad (10): {126/125, 176/175} tempering of decad, 328-et version smithgw_smalldi11 (11): Small diesic 11-note block, <10/9, 126/125, 1728/1715> commas smithgw_smalldi19a (19): Small diesic 19-note block, <16/15, 126/125, 1728/1715> commas smithgw_smalldi19b (19): Small diesic 19-note block, <16/15, 126/125, 2401/2400> commas smithgw_smalldi19c (19): Small diesic 19-note scale containing glumma smithgw_smalldiglum19 (19): Small diesic "glumma" variant of 19-note MOS, 31/120 version smithgw_smalldimos11 (11): Small diesic 11-note MOS, 31/120 version smithgw_smalldimos19 (19): Small diesic 19-note MOS, 31/120 version smithgw_star (8): Gene Ward Smith "Star" scale, untempered version smithgw_star2 (8): Gene Ward Smith "Star" scale, alternative untempered version starra (12): 12 note {126/125, 176/175} scale, 328-et version smithgw_starrb (12): 12 note {126/125, 176/175} scale, 328-et version smithgw_starrc (12): 12 note {126/125, 176/175} scale, 328-et version smithgw_tetra (12): {225/224, 385/384} tempering of two-tetrachord 12-note scale smithgw_tr31 (15): 6/31 generator supermajor seconds tripentatonic scale smithgw_tr7_13 (12): 81/80 ==> 28561/28672 smithgw_tr7_13b (12): reverse reduced 81/80 ==> 28561/28672 smithgw_tr7_13r (12): reduced 81/80 ==> 28561/28672 smithgw_tra (12): 81/80 ==> 1029/512 smithgw_tre (12): 81/80 ==> 1029/512 ==> reduction smithgw_treb (12): reversed 81/80 ==> 1029/512 ==> reduction smithgw_trx (12): reduced 3/2->7/6 5/4->11/6 scale smithgw_trxb (12): reversed reduced 3/2->7/6 5/4->11/6 scale smithgw_wa (12): Wreckmeister A temperament, TL 2-6-2002 smithgw_wa120 (12): 120-tET version of Wreckmeister A temperament smithgw_wb (12): Wreckmeister B temperament, TL 2-6-2002 smithgw_well1 (12): Well-temperament, Gene Ward Smith (2005) smithgw_whelp1 (12): well-temperament with one pure third, Gene Ward Smith, 2003 smithgw_whelp2 (12): well-temperament with two pure thirds smithgw_whelp3 (12): well-temperament with three pure thirds smithgw_wiz28 (28): 11-limit Wizard[28] smithgw_wiz34 (34): 11-limit Wizard[34] smithgw_wiz38 (38): 11-limit Wizard[38] smithgw_wreckpop (12): "Wreckmeister" 13-limit meanpop (50-et) tempered thirds smithj12 (12): J. Smith, 5-limit JI scale, MMM 21-3-2006 smithj17 (17): J. Smith 17-tone well temperament, MMM 12-2006 smithrk_19 (19): 19 out of 612-tET by Roger K. Smith, 1978 smithrk_mult (19): Roger K. Smith, "Multitonic" scale, just version solar (7): Solar system scale: 0=Pluto, 8=Mercury. 1/1=248.54 years period solemn (6): Solemn 6 songlines (12): Songlines.DEM, Bill Thibault and Scott Gresham-Lancaster. 1992 ICMC (=rectsp6) sorge (12): Sorge's Monochord (1756) sorge1 (12): Georg Andreas Sorge, 1744 (A) sorge2 (12): Georg Andreas Sorge, 1744 (B) sorge3 (12): Georg Andreas Sorge, well temperament, (1756, 1758) sparschuh (12): Andreas Sparschuh WTC temperament, 1/1=C=250, modified Collatz sequence sparschuh2 (12): Modified Sparschuh temperament with A=419Hz by Tom Dent spec1_14 (12): Spectrum sequence of 8/7: 1 to 27 reduced by 2/1 spec1_17 (12): Spectrum sequence of 7/6: 1 to 27 reduced by 2/1 spec1_25 (12): Spectrum sequence of 5/4: 1 to 25 reduced by 2/1 spec1_33 (12): Spectrum sequence of 4/3: 1 to 29 reduced by 2/1 spec1_4 (12): Spectrum sequence of 7/5: 1 to 25 reduced by 2/1 spec1_5 (12): Spectrum sequence of 1.5: 1 to 27 reduced by 2/1 specr2 (12): Spectrum sequence of sqrt(2): 1 to 29 reduced by 2/1 specr3 (12): Spectrum sequence of sqrt(3): 1 to 31 reduced by 2/1 spon_chal1 (9): JC Spondeion, from discussions with George Kahrimanis about tritone of spondeion spon_chal2 (9): JC Spondeion II, 10 May 1997. Various tunings for the parhypatai and hence trito spon_mont (5): Montford's Spondeion, a mixed septimal and undecimal pentatonic, 1923 spon_terp (5): Subharm. 6-tone series, guess at Greek poet Terpander's, 6th c. BC & Spondeion, Winnington-Ingram (1928) stade (12): Organs in St. Cosmae, Stade; Magnuskerk, Anloo; H.K. Sluipwijk, modif. 1/4 mean stanhope (12): Well temperament of Charles, third earl of Stanhope (1806) stanhope2 (12): Stanhope temperament (real version?) with 1/3 synt. comma temp. stanhope_f (12): Stanhope temperament, equal beating version by Farey (1807) stanhope_s (12): Stanhope temperament, alt. version with 1/3 syntonic comma starling (12): Starling temperament, Herman Miller (1999) stearns (7): Dan Stearns, guitar scale stearns2 (22): Dan Stearns, scale for "At A Day Job" based on harmonics 10-20 and 14-28 stearns3 (9): Dan Stearns, trivalent version of Bohlen's Lambda scale stearns4 (7): Dan Stearns, 1/4-septimal comma temperament, tuning-math 2-12-2001 steldek1 (30): Stellated two out of 1 3 5 7 9 dekany steldek1s (34): Superstellated two out of 1 3 5 7 9 dekany steldek2 (35): Stellated two out of 1 3 5 7 11 dekany steldek2s (40): Superstellated two out of 1 3 5 7 11 dekany steleik1 (70): Stellated Eikosany 3 out of 1 3 5 7 9 11 steleik1s (80): Superstellated Eikosany 3 out of 1 3 5 7 9 11 steleik2 (80): Stellated Eikosany 3 out of 1 3 5 7 11 13 steleik2s (92): Superstellated Eikosany 3 out of 1 3 5 7 11 13 stelhex1 (14): Stellated two out of 1 3 5 7 hexany, also dekatesserany, mandala, tetradekany stelhex2 (12): Stellated two out of 1 3 5 9 hexany stelhex3 (14): Stellated Tetrachordal Hexany based on Archytas's Enharmonic stelhex4 (14): Stellated Tetrachordal Hexany based on the 1/1 35/36 16/15 4/3 tetrachord stelhex5 (12): Stellated two out of 1 3 7 9 hexany, stellation is degenerate stelhex6 (14): Stellated two out of 1 3 5 11 hexany, from The Giving, by Stephen J. Taylor stelpd1 (71): Stellated two out of 1 3 5 7 9 11 pentadekany stelpd1s (110): Superstellated two out of 1 3 5 7 9 11 pentadekany stelpent1 (30): Stellated one out of 1 3 5 7 9 pentany stelpent1s (55): Superstellated one out of 1 3 5 7 9 pentany steltet1 (16): Stellated one out of 1 3 5 7 tetrany steltet1s (20): Superstellated one out of 1 3 5 7 tetrany steltet2 (16): Stellated three out of 1 3 5 7 tetrany steltet2s (20): Superstellated three out of 1 3 5 7 tetrany steltri1 (6): Stellated one out of 1 3 5 triany steltri2 (6): Stellated two out of 1 3 5 triany stevin (12): Simon Stevin, monochord division of 10000 parts for 12-tET (1585) stopper (19): Bernard Stopper, piano tuning with 19th root of 3 (1988) storbeck (21): Ulrich Storbeck, 2001 strahle (12): Strahle's Geometrical scale sub24-12 (12): Subharmonics 24-12 sub24 (24): Subharmonics 24-1 sub40 (12): sub 40-20 sub48 (12): 12 of sub 48 (Leven) sub50 (12): 12 of sub 50 sub8 (8): Subharmonic series 1/16 - 1/8 sumatra (9): "Archeological" tuning of Pasirah Rus orch. in Muaralakitan, Sumatra. 1/1=354 Hz super_10 (10): A superparticular 10-tone scale super_11 (11): A superparticular 11-tone scale super_12 (12): A superparticular 12-tone scale super_12_1 (12): Another superparticular 12-tone scale super_12_2 (12): Another superparticular 12-tone scale super_13 (13): A superparticular 13-tone scale super_14 (14): A superparticular 14-tone scale super_15 (15): A superparticular 15-tone scale super_17 (17): Superparticular 17-tone scale super_19 (19): Superparticular 19-tone scale super_19_1 (19): Superparticular 19-tone scale super_19_2 (19): Superparticular 19-tone scale super_22 (22): Superparticular 22-tone scale super_22_1 (22): Superparticular 22-tone scale super_24 (24): Superparticular 24-tone scale, inverse of Mans.ur 'Awad super_7 (7): A superparticular 7-tone scale super_8 (8): A superparticular 8 tone scale super_9 (9): A superparticular 9-tone scale suppig (19): Friedrich Suppig's 19-tone JI scale. Calculus Musicus, Berlin 1722 sur_7 (7): 7-tone surupan sur_9 (9): Theoretical nine-tone surupan gamut sur_ajeng (5): Surupan ajeng sur_degung (5): Surupan degung sur_madenda (5): Surupan madenda sur_melog (5): Surupan melog sur_miring (5): Surupan miring sur_x (5): Surupan tone-gender X (= unmodified nyorog) sur_y (5): Surupan tone-gender Y (= mode on pamiring) sverige (24): Scale on Swedish 50 crown banknote of some kind of violin. syntonolydian (7): Greek Syntonolydian, also genus duplicatum medium, or ditonum (Al-Farabi) syrian (30): After ^Sayh.'Ali ad-Darwis^ (Shaykh Darvish) from d'Erlanger vol.5, p.29 szpak_24 (24): Stephen Szpak's scale, TL 2-1-2004 pagano_b (12): Pat Pagano and David Beardsley, 17-limit scale, TL 27-2-2001 palace (12): Palace mode+ palace2 (7): Byzantine Palace mode, 17-limit panpipe1 (6): Palina panpipe of Solomon Islands. 1/1=f+45c. From Ocora CD Guadalcanal panpipe2 (15): Lalave panpipe of Solomon Islands. 1/1=f'+47c. panpipe3 (15): Tenaho panpipe of Solomon Islands. 1/1=f'+67c. parachrom (7): Parachromatic, new genus 5 + 5 + 20 parts parakleismic (42): Parakleismic temperament, g=315.250913, 5-limit parizek (12): Petr Parizek, 12-tone Linear Level tuning, 1/1=Ab parizek_13lqmt (12): April 2003 - Petr Parizek parizek_17lqmt (12): To tune the scale by ear, please choose the intervals in the following order: parizek_7lmtd1 (12): Use SET MIDDLE 62 parizek_7lqmtd2 (12): Use SET MIDDLE 62 parizek_cirot (12): Overtempered circular tuning (1/1 is F) parizek_epi (12): In The Epimoric World parizek_epi2 (24): In the Epimoric World - extended (version for two keyboards) parizek_epi2a (24): April 2003 - Petr Parizek parizek_ji1 (12): Petr Parizek, 12-tone septimal tuning, 2002. parizek_jiweltmp (12): April 2003 - Petr Parizek jiwt2 (12): June 2003 - Petr Parizek parizek_llt7 (7): 7-tone mode of Linear Level Tuning 2000 (= wilson_helix) parizek_qmeb1 (12): Equal beating quasi-meantone tuning no. 1 - F...A# (1/1 = 261.7Hz)(3/2 5/3 5/4 7/4 7/6) parizek_qmeb2 (12): Equal beating quasi-meantone tuning no. 2 - F...A# (1/1 = 262.7Hz) parizek_qmeb3 (12): Equal beating quasi-meantone tuning no. 3 - F...A#. 1/1 = 262Hz parizek_qmtp12 (12): 12-tone quasi-meantone tuning with 1/9 Pyth. comma as basic tempering unit (F...A#) parizek_qmtp24 (24): 24-tone quasi-meantone tuning with 1/9 Pyth. comma as basic tempering unit (Bbb...C##) parizek_syndiat (12): Petr Parizek, diatonic scale with syntonic alternatives parizek_syntonal (12): Petr Parizek, Syntonic corrections in JI tonality, Jan. 2004 parizek_temp19 (12): Petr Parizek, genus [3 3 19 19 19] well temperament partch-barstow (18): Guitar scale for Partch's Barstow (1941, 1968) partch-greek (12): Partch Greek scales from "Two Studies on Ancient Greek Scales" on black/white partch-grm (9): Partch Greek scales from "Two Studies on Ancient Greek Scales" mixed partch-indian (22): Partch's Indian Chromatic, Exposition of Monophony, 1933. partch-ur (39): Ur-Partch curved keyboard, published in Interval partch_29-av (29): 29-tone JI scale from Partch's Adapted Viola 1928-30 partch_29 (29): Partch/Ptolemy 11-limit Diamond partch_37 (37): From "Exposition on Monophony" 1933, unp. see Ayers, 1/1 vol.9(2) partch_39 (39): Ur-Partch Keyboard 39 tones, published in Interval partch_41 (41): 13-limit Diamond after Partch, Genesis of a Music, p 454, 2nd edition partch_41a (41): From "Exposition on Monophony" 1933, unp. see Ayers, 1/1 vol. 9(2) partch_41comb (41): 41-tone JI combination from Partch's 29-tone and 37-tone scales partch_43 (43): Harry Partch's 43-tone pure scale partch_43a (43): From "Exposition on Monophony" 1933, unp. see Ayers, 1/1 vol. 9(2) patala (7): Observed patala tuning from Burma, Helmholtz/Ellis p. 518, nr.83 pelog1 (7): Gamelan Saih pitu from Ksatria, Den Pasar (South Bali). 1/1=312.5 Hz pelog10 (7): Balinese saih 7 scale, Krobokan. 1/1=275 Hz. McPhee, 1966 pelog11 (7): Balinese saih pitu, gamelan luang, banjar Se`se'h. 1/1=276 Hz. McPhee, 1966 pelog11i (11): George Secor's isopelogic scale with ~537.84194 generator and just 13/11 pelog12 (7): Balinese saih pitu, gamelan Semar Pegulingan, Tampak Gangsai, 1/1=310, McPhee pelog13 (7): Balinese saih pitu, gamelan Semar Pegulingan, Klungkung, 1/1=325. McPhee, 1966 pelog14 (7): Balinese saih pitu, suling gambuh, Tabanan, 1/1=211 Hz, McPhee, 1966 pelog15 (7): Balinese saih pitu, suling gambuh, Batuan, 1/1=202 Hz. McPhee, 1966 pelog2 (7): Bamboo gambang from Batu lulan (South Bali). 1/1=315 Hz pelog3 (5): Gamelan Gong from Padangtegal, distr. Ubud (South Bali). 1/1=555 Hz pelog4 (7): Hindu-Jav. demung, excavated in Banjarnegara. 1/1=427 Hz pelog5 (7): Gamelan Kyahi Munggang (Paku Alaman, Jogja). 1/1=199.5 Hz pelog6 (6): Gamelan Semar pegulingan, Ubud (S. Bali). 1/1=263.5 Hz pelog7 (7): Gamelan Kantjilbelik (kraton Jogja). Measured by Surjodiningrat, 1972. pelog8 (14): from William Malm: Music Cultures of the Pacific, the Near East and Asia. pelog9 (7): 9-tET Pelog pelog9i (9): George Secor's isopelogic scale with ~537.84194 generator and just 13/11 pelog_24 (7): Subset of 24-tET (Sumatra?) pelog_a (7): Pelog, average class A. Kunst 1949 pelog_alv (7): Bill Alves JI Pelog, 1/1 vol. 9 no. 4, 1997. 1/1=293.33 pelog_av (7): "Normalised Pelog", Kunst, 1949. Average of 39 Javanese gamelans pelog_b (7): Pelog, average class B. Kunst 1949 pelog_c (7): Pelog, average class C. Kunst 1949 pelog_he (7): Observed Javanese Pelog scale, Helmholtz/Ellis p. 518, nr.96 pelog_jc (5): John Chalmers' Pelog, on keys C# E F# A B c#, like Olympos' Enharmonic on 4/3 pelog_laras (7): Lou Harrison, gamelan "Si Betty" pelog_me1 (7): Gamelan Kyahi Kanyut Mesem pelog (Mangku Nagaran). 1/1=295 Hz pelog_me2 (7): Gamelan Kyahi Bermara (kraton Jogja). 1/1=290 Hz pelog_me3 (7): Gamelan Kyahi Pangasih (kraton Solo). 1/1=286 Hz pelog_pa (7): "Blown fifth" pelog, von Hornbostel, type a. pelog_pa2 (7): New mixed gender Pelog pelog_pb (7): "Primitive" Pelog, step of blown semi-fourths, von Hornbostel, type b. pelog_pb2 (7): "Primitive" Pelog, Kunst: Music in Java, p. 28 pelog_schmidt (7): Modern Pelog designed by Dan Schmidt and used by Berkeley Gamelan pelog_selun (11): Gamelan selunding from Kengetan, South Bali (Pelog), 1/1=141 Hz pelog_slen (11): W.P. Malm, pelog+slendro, Musical Cultures Of The Pacific, The Near East, And Asia. P: 1,3,5,6,8,10; S: 2,4,7,9 pelog_str (9): JI Pelog with stretched 2/1 and extra tones between 2-3, 6-7. Wolf, XH 11, '87 pelogic (9): Pelogic temperament, g=521.1, 5-limit pelogic2 (12): Pelogic temperament, g=677.0 in cycle of fifths order penta1 (12): Pentagonal scale 9/8 3/2 16/15 4/3 5/3 penta2 (12): Pentagonal scale 7/4 4/3 15/8 32/21 6/5 penta_opt (5): Optimally consonant major pentatonic, John deLaubenfels, 2001 pentadekany (15): 2)6 1.3.5.7.11.13 Pentadekany (1.3 tonic) pentadekany2 (15): 2)6 1.3.5.7.9.11 Pentadekany (1.3 tonic) pentadekany3 (15): 2)6 1.5.11.17.23.31 Pentadekany (1.5 tonic) pentatetra1 (9): Penta-tetrachord 20/19 x 19/18 x 18/17 x 17/16 = 5/4. 5/4 x 16/15 = 4/3 pentatetra2 (9): Penta-tetrachord 20/19 x 19/18 x 18/17 x 17/16 = 5/4. 5/4 x 16/15 = 4/3 pentatetra3 (9): Penta-tetrachord 20/19 x 19/18 x 18/17 x 17/16 = 5/4. 5/4 x 16/15 = 4/3 pentatriad (11): 4:5:6 Pentatriadic scale pentatriad1 (11): 3:5:9 Pentatriadic scale pepper (17): Keenan Pepper's 17-tone jazz tuning, TL 07-06-2000 pepper2 (12): Keenan Pepper's "Noble Fifth" with chromatic/diatonic semitone = Phi (12) peprmint (24): Peppermint 24: Wilson/Pepper apotome/limma=Phi, 2 chains spaced for pure 7:6 perkis-indian (22): Indian 22 Perkis perrett-tt (19): Perrett Tierce-Tone perrett (7): Perrett / Tartini / Pachymeres Enharmonic perrett_14 (14): Perrett's 14-tone system (subscale of tierce-tone) perrett_chrom (7): Perrett's Chromatic perry (12): Robin Perry, Tuning List 22-9-'98 perry2 (12): Robin Perry, 7-limit scale, TL 22-10-2006 perry3 (13): Robin Perry, symmetrical 3,5,17 scale, TL 22-10-2006 persian-far (17): Hormoz Farhat, average of observed Persian tar and sehtar tunings (1966) persian-vaz (17): Vaziri's Persian tuning, using quartertones persian (17): Persian Tar Scale, from Dariush Anooshfar, Internet Tuning List 2/10/94 persian2 (17): Traditional Persian scale, from Mark Rankin phi1_13 (13): Pythagorean scale with (Phi + 1) / 2 as fifth phi_10 (10): Pythagorean scale with Phi as fifth phi_12 (12): Non-Octave Pythagorean scale with Phi as fourth. Jacky Ligon TL 12-04-2001 phi_13 (13): Pythagorean scale with Phi as fifth phi_13a (13): Non-Octave Pythagorean scale with Phi as fifth, Jacky Ligon TL 12-04-2001 phi_13b (13): Non-Octave Pythagorean scale with 12 3/2s, Jacky Ligon, TL 12-04-2001 phi_17 (17): Phi + 1 equal division by 17, Brouncker (1653) phi_7b (7): Heinz Bohlen's Pythagorean scale with Phi as fifth (1999) phi_7be (7): 36-tET approximation of phi_7b phi_8 (8): Non-Octave Pythagorean scale with 4/3s, Jacky Ligon, TL 12-04-2001 phi_8a (8): Non-Octave Pythagorean scale with 5/4s, Jacky Ligon, TL 12-04-2001 phillips_19 (19): Pauline Phillips, organ manual scale, TL 7-10-2002 phillips_19a (19): Adaptation by Gene Ward Smith with more consonant chords, TL 25-10-2002 phillips_22 (22): All-key 19-limit JI scale (2002), TL 21-10-2002 phillips_ji (21): Pauline Phillips, JI 0 #/b "C" scale (2002), TL 8-10-2002 phryg_chromcon2 (7): Harmonic Conjunct Chromatic Phrygian phryg_chromconi (7): Inverted Conjunct Chromatic Phrygian phryg_chrominv (7): Inverted Schlesinger's Chromatic Phrygian phryg_chromt (24): Phrygian Chromatic Tonos phryg_diat (8): Schlesinger's Phrygian Harmonia, a subharmonic series through 13 from 24 phryg_diatcon (7): A Phrygian Diatonic with its own trite synemmenon replacing paramese phryg_diatinv (7): Inverted Conjunct Phrygian Harmonia with 17, the local Trite Synemmenon phryg_diatsinv (8): Inverted Schlesinger's Phrygian Harmonia, a harmonic series from 12 from 24 phryg_enh (7): Schlesinger's Phrygian Harmonia in the enharmonic genus phryg_enhcon (7): Harmonic Conjunct Enharmonic Phrygian phryg_enhinv (7): Inverted Schlesinger's Enharmonic Phrygian Harmonia phryg_enhinv2 (7): Inverted harmonic form of Schlesinger's Enharmonic Phrygian phryg_penta (7): Schlesinger's Phrygian Harmonia in the pentachromatic genus phryg_pis (15): The Diatonic Perfect Immutable System in the Phrygian Tonos phryg_tri1 (7): Schlesinger's Phrygian Harmonia in the chromatic genus phryg_tri1inv (7): Inverted Schlesinger's Chromatic Phrygian Harmonia phryg_tri2 (7): Schlesinger's Phrygian Harmonia in the second trichromatic genus phryg_tri3 (7): Schlesinger's Phrygian Harmonia in the first trichromatic genus phrygian (12): Old Phrygian ?? phrygian_diat (24): Phrygian Diatonic Tonos phrygian_enh (12): Phrygian Enharmonic Tonos phrygian_harm (12): Phrygian Harmonia-Aliquot 24 (flute tuning) piano (19): Enhanced Piano Total Gamut, see 1/1 vol. 8/2 January 1994 piano7 (12): Enhanced piano 7-limit pipedum_10 (10): 2048/2025 and 34171875/33554432 are homophonic intervals pipedum_10a (10): 2048/2025 and 25/24, Manuel Op de Coul, 2001 pipedum_10b (10): 225/224, 64/63 and 25/24 are homophonic intervals pipedum_10c (10): 225/224, 64/63 and 49/48 are homophonic intervals pipedum_10d (10): 1029/1024, 2048/2025 and 64/63 are homophonic intervals pipedum_10e (10): 2048/2025, 64/63 and 49/48 are homophonic intervals pipedum_10f (10): 225/224, 64/63 and 28/27 are homophonic intervals pipedum_10g (10): 225/224, 1029/1024 and 2048/2025 are homophonic intervals pipedum_10h (10): 225/224, 1029/1024 and 64/63 are homophonic intervals pipedum_10i (10): 225/224, 2048/2025 and 49/48 are homophonic intervals pipedum_10j (10): 25/24, 28/27 and 49/48, Gene Ward Smith, 2002 pipedum_10k (10): 2048/2025, 225/224 and 2401/2400 pipedum_11 (11): 16/15 and 15625/15552 are homophonic intervals pipedum_11a (11): 126/125, 1728/1715 and 10/9, Gene Ward Smith, 2002 pipedum_12 (12): 81/80 and 2048/2025 are homophonic intervals pipedum_12a (12): 81/80 and 2048/2025 are homophonic intervals pipedum_12b (12): 64/63, 50/49 comma and 36/35 chroma pipedum_12c (12): 225/224, 64/63 and 36/35 are homophonic intervals pipedum_12d (12): 50/49, 128/125 and 225/224 are homophonic intervals pipedum_12e (12): 50/49, 225/224 and 3136/3125 are homophonic intervals pipedum_12f (12): 128/125, 3136/3125 and 703125/702464 are homophonic intervals pipedum_12g (12): 50/49, 225/224 and 28672/28125 are homophonic intervals pipedum_12h (12): 2048/2025 and 67108864/66430125, Gene Ward Smith, 2004 pipedum_12i (12): 64/63 and 6561/6272, Gene Ward Smith, 2004 pipedum_12j (12): 6561/6272 and 59049/57344 pipedum_12k (12): 64/63 and 729/686, Gene Ward Smith, 2004 pipedum_12l (12): 81/80, 361/360 and 513/512, Gene Ward Smith pipedum_13 (13): 33275/32768 and 163840/161051 are homophonic intervals. Op de Coul, 2001 pipedum_13a (13): 15/14, 3136/3125, 2401/2400, Gene Ward Smith, 2002 pipedum_13b (13): 15/14, 3136/3125, 6144/6125, Gene Ward Smith, 2002 pipedum_13bp (13): 78732/78125 and 250/243, twelfth based, Manuel Op de Coul, 2003 pipedum_13bp2 (13): 250/243 and 648/625, twelfth based, Manuel Op de Coul, 2003 pipedum_13c (13): 15/14, 2401/2400, 6144/6125, Gene Ward Smith, 2002 pipedum_13d (13): 125/121 and 33275/32768, Joe Monzo, 2003 pipedum_13e (13): 33275/32768 and 163840/161051, Manuel Op de Coul, 2004 pipedum_14 (14): 81/80, 49/48 and 2401/2400, Paul Erlich, TL 17-1-2001 pipedum_14a (14): 81/80, 50/49 and 2401/2400, Paul Erlich, 2001 pipedum_14b (14): 245/243, 81/80 comma and 25/24 chroma pipedum_14c (14): 245/243, 50/49 comma and 25/24 chroma pipedum_15 (15): 126/125, 128/125 and 875/864, 5-limit, Paul Erlich, 2001 pipedum_15a (15): Septimal version of pipedum_15, Manuel Op de Coul, 2001 pipedum_15b (15): 126/125, 128/125 and 1029/1024, Paul Erlich, 2001 pipedum_15c (15): 49/48, 126/125 and 1029/1024, Paul Erlich, 2001 pipedum_15d (15): 64/63, 126/125 and 1029/1024, Paul Erlich, 2001 pipedum_15e (15): 64/63, 875/864 and 1029/1024, Paul Erlich, 2001 pipedum_15f (15): 126/125, 64/63 comma and 28/27 chroma pipedum_15g (15): 128/125 and 250/243 pipedum_16 (16): 50/49, 126/125 and 1029/1024, Paul Erlich, 2001 pipedum_16a (16): 3125/3072 and 1990656/1953125, OdC 2004 pipedum_17 (17): 245/243, 64/63 and 525/512, Paul Erlich, 2001 pipedum_17a (17): 245/243, 525/512 and 1728/1715, Paul Erlich, 2001 pipedum_17b (17): 245/243, 64/63 comma and 25/24 chroma pipedum_17c (17): 1605632/1594323 and 177147/175616, Manuel Op de Coul, 2002 pipedum_17d (17): 243/242, 99/98 and 64/63, Manuel Op de Coul, 2002 pipedum_17e (17): 245/243, 1728/1715 and 32805/32768, Manuel Op de Coul, 2003 pipedum_17f (17): 243/242 and 8192/8019, Manuel Op de Coul pipedum_17g (17): 243/242, 896/891 and 99/98, Manuel Op de Coul pipedum_18 (18): 875/864, 686/675 and 128/125, Paul Erlich, 2001 pipedum_18a (18): 875/864, 686/675 and 50/49, Paul Erlich, 2001 pipedum_18b (18): 1728/1715, 875/864 and 686/675, Paul Erlich, 2001 pipedum_19 (19): 81/80 and 15625/15552 are homophonic intervals, inverse of Mandelbaum pipedum_19a (19): 3125/3072 and 15625/15552 are homophonic intervals pipedum_19b (19): 15625/15552 and 78732/78125, Paul Erlich, TL 19-2-2001 pipedum_19c (19): Periodicity block by Paul Erlich, 2001 pipedum_19d (19): Periodicity block by Paul Erlich, 2001 pipedum_19e (19): Periodicity block by Paul Erlich, 2001 pipedum_19f (19): Periodicity block by Paul Erlich, 2001 pipedum_19g (19): Periodicity block by Paul Erlich, 2001 pipedum_19h (19): 126/125, 81/80 comma and 49/48 chroma pipedum_19i (19): 225/224, 81/80 comma and 49/48 chroma pipedum_19j (19): 21/20, 3136/3125 and 2401/2400, Gene Ward Smith, 2002 pipedum_19k (19): 21/20, 3136/3125 and 6144/6125, Gene Ward Smith, 2002 pipedum_19l (19): 21/20, 2401/2400 and 6144/6125, Gene Ward Smith, 2002 pipedum_19m (19): 126/125, 1728/1715 and 16/15, Gene Ward Smith, 2002 pipedum_19n (19): 126/125, 2401/2400 and 16/15, Gene Ward Smith, 2002 pipedum_19o (19): 225/224, 3136/3125 and 4375/4374, OdC 2000 pipedum_21 (21): 36/35, 225/224 and 2401/2400, P. Erlich, 2001. Just PB version of miracle1 pipedum_21a (21): 1029/1024, 81/80 comma and 25/24 chroma pipedum_21b (21): 36/35, 225/224 and 1029/1024, Gene Ward Smith, 2002 pipedum_21c (21): First 128/125 and ampersand comma Fokker block pipedum_22 (22): 3125/3072 and 2109375/2097152 are homophonic intervals pipedum_22a (22): 2048/2025 and 2109375/2097152 are homophonic intervals pipedum_22b (22): 2025/2048, 245/243 and 64/63. P. Erlich "7-limit Indian", TL 19-12-2000 pipedum_22b2 (22): Version of pipedum_22b with other shape, Paul Erlich pipedum_22c (22): 1728/1715, 64/63 and 50/49, Paul Erlich, 2001 pipedum_22d (22): 1728/1715, 875/864 and 64/63, Paul Erlich, 2001 pipedum_22e (22): 1728/1715, 245/243 and 50/49, Paul Erlich, 2001 pipedum_22f (22): 1728/1715, 245/243 and 875/864, Paul Erlich, 2001 pipedum_22g (22): 225/224, 1728/1715 and 64/63, Paul Erlich, 2001 pipedum_22h (22): 225/224, 1728/1715 and 875/864, Paul Erlich, 2001 pipedum_22i (22): 1728/1715, 245/243 and 245/243, Paul Erlich, 2001 pipedum_22j (22): 50/49, 64/63 and 245/243, Gene Ward Smith, 2002 pipedum_22k (22): 121/120, 2048/2025 and 4125/4096, Manuel Op de Coul pipedum_22l (22): 121/120, 736/729, 100/99 and 2048/2025 pipedum_23 (23): 6144/6125, 15625/1552 and 5103/5000, Manuel Op de Coul, 2003 pipedum_24 (24): 121/120, 16384/16335 and 32805/32768. Manuel Op de Coul, 2001 pipedum_24a (24): 49/48, 81/80 and 128/125, Gene Ward Smith, 2002 pipedum_24b (24): 49/48, 81/80 and 531441/524288 pipedum_25 (25): 65625/65536, 1029/1024 and 3125/3072, Manuel Op de Coul, 2003 pipedum_26 (26): 1029/1024, 1728/1715 and 50/49, Paul Erlich, 2001 pipedum_26a (26): 50/49, 81/80 and 525/512, Gene Ward Smith, 2002 pipedum_26b (26): 81/80 and 78125/73728, Gene Ward Smith, 2005 pipedum_27 (27): 126/125, 1728/1715 and 4000/3969 are homophonic intervals, Paul Erlich pipedum_27a (27): 126/126, 1728/1715 and 64/63, Paul Erlich, 2001 pipedum_27b (27): 2401/2400, 126/125 and 128/125, Paul Erlich, 2001 pipedum_27c (27): 2401/2400, 126/125 and 686/675, Paul Erlich, 2001 pipedum_27d (27): 2401/2400, 126/125 and 64/63, Paul Erlich, 2001 pipedum_27e (27): 2401/2400, 126/125 and 245/243, Paul Erlich, 2001 pipedum_27f (27): 2401/2400, 1728/1715 and 128/125, Paul Erlich, 2001 pipedum_27g (27): 2401/2400, 1728/1715 and 686/675, Paul Erlich, 2001 pipedum_27h (27): 2401/2400, 1728/1715 and 64/63, Paul Erlich, 2001 pipedum_27i (27): 2401/2400, 1728/1715 and 245/243, Paul Erlich, 2001 pipedum_27j (27): 78732/78125 and 390625000/387420489 pipedum_27k (27): 67108864/66430125 and 25/24 pipedum_28 (28): 393216/390625 and 16875/16384 pipedum_29 (29): 5120/5103, 225/224 and 50421/50000, Manuel Op de Coul, 2003 pipedum_29a (29): 49/48, 55/54, 65/64, 91/90 and 100/99 pipedum_31 (31): 81/80, 225/224 and 1029/1024 are homophonic intervals pipedum_31a (31): 393216/390625 and 2109375/2097152 are homophonic intervals pipedum_31b (31): 245/243, 1029/1024 comma and 25/24 chroma pipedum_31c (31): 126/125, 225/224 and 1029/1024, Op de Coul pipedum_31d (31): 1728/1715, 225/224 and 81/80 pipedum_31e (31): 81/80, 126/125 and 1029/1024, Gene Smith (2005) "Synstargam" pipedum_32 (32): 225/224, 2048/2025 and 117649/116640 pipedum_32a (32): 589824/588245, 225/224 and 2048/2025 pipedum_34 (34): 15625/15552 and 393216/390625 are homophonic intervals pipedum_34a (34): 15625/15552 and 2048/2025, Manuel Op de Coul, 2001 pipedum_34b (34): 100/99, 243/242 and 5632/5625, Manuel Op de Coul pipedum_36 (36): 1029/1024, 245/243 comma and 50/49 chroma, Gene Ward Smith, 2001 pipedum_36a (36): 1125/1024 and 531441/524288, Op de Coul pipedum_37 (37): 250/243, 3136/3125 and 3125/3087, Gene Ward Smith, 2002 pipedum_38 (38): 81/80 and 1224440064/1220703125, Manuel Op de Coul, 2001 pipedum_38a (38): 50/49, 81/80 and 3125/3072, Gene Ward Smith, 2002 pipedum_41 (41): 100/99 105/104 196/195 275/273 385/384, Paul Erlich, TL 3-11-2000 pipedum_41a (41): pipedum_41 improved shape by Manuel Op de Coul, all intervals superparticular pipedum_41b (41): pipedum_41 more improved shape by M. OdC, all intervals superparticular pipedum_41c (41): 225/224, 245/243 and 1029/1024, Gene Ward Smith, 2002 pipedum_41d (41): 3125/3072 and 32805/32768 pipedum_43 (43): 81/80, 126/125 and 12288/12005, Gene Ward Smith, 2002 pipedum_45 (45): 81/80, 525/512 and 2401/2400, Gene Ward Smith, 2002 scala205pipedum_45a (45): 81/80, 2401/2400 and 4375/4374, Gene Ward Smith pipedum_46 (46): 126/125, 1029/1024 and 5120/5103. Manuel Op de Coul, 2001 pipedum_46a (46): 126/125, 1029/1024 and 245/243, Gene Ward Smith, 2002 pipedum_46b (46): 2048/2025 and 78732/78125 pipedum_46c (46): 126/125, 176/175, 385/384 and 896/891, Paul Erlich pipedum_46d (46): 91/90, 121/120, 126/125, 169/168 and 176/175 pipedum_5 (5): 16/15 and 27/25 pipedum_50 (50): 81/80, 126/125 and 16807/16384, Gene Ward Smith, 2002 pipedum_53 (53): 15625/15552 and 32805/32768, Manuel Op de Coul, 2001 pipedum_53a (53): 225/224, 1728/1715 and 4375/4374, Manuel Op de Coul, 2001 pipedum_53b (53): 225/224, 1728/1715 and 3125/3087, Gene Ward Smith, 2002 pipedum_55 (55): 81/80, 686/675 and 6144/6125, Gene Ward Smith, 2002 pipedum_58 (58): 9801/9800, 2401/2400, 5120/5103 and 896/891 pipedum_58a (58): 126/125, 144/143, 176/175, 196/195 and 364/363 pipedum_5a (5): 27/25 and 81/80 pipedum_64 (64): 225/224 235298/234375 and 67108864/66706983 pipedum_65 (65): 1216/1215, 32805/32768 and 39858075/39845888. Manuel Op de Coul, 2001 pipedum_65a (65): 78732/78125 and 32805/32768 pipedum_67 (67): 81/80, 1029/1024 and 9604/9375, Gene Ward Smith, 2002 pipedum_68 (68): 245/243, 2048/2025 and 2401/2400, Gene Ward Smith, 2002 pipedum_7 (7): 81/80, 64/63 and 6144/6125, Manuel Op de Coul pipedum_72 (72): 225/224, 1029/1024 and 4375/4374, Gene Ward Smith, 2002 pipedum_72a (72): 4375/4374, 2401/2400 and 15625/15552, Manuel Op de Coul, 2002 pipedum_72b (72): 225/224, 3025/3024, 1375/1372 and 4375/4374 pipedum_72b2 (72): Optimised version of pipedum_72b, Manuel Op de Coul pipedum_72c (72): 441/440, 2401/2400, 4375/4374 and 1375/1372 pipedum_74 (74): 81/80, 126/125 and 4194304/4117715, Gene Ward Smith, 2002 pipedum_81 (81): 81/80, 126/125 and 17294403/16777216, Gene Ward Smith, 2002 pipedum_87 (87): 67108864/66430125 and 15625/15552, Op de Coul pipedum_9 (9): 225/224, 49/48 and 36/35 are homophonic intervals pipedum_99 (99): 2401/2400, 3136/3125 and 4375/4374, Gene Ward Smith, 2002 pipedum_9a (9): 4375/4374, 2401/2400 and 21/20 are homophonic intervals pipedum_9b (9): 128/125 and 2109375/2097152 are homophonic intervals pipedum_9c (9): 49/48, 21/20, 99/98 and 121/120, Gene Ward Smith, 2002 pipedum_9d (9): 128/125, 36/35, 99/98 and 121/120, Gene Ward Smith, 2002 pipedum_9e (9): 21/20, 27/25 and 128/125 polansky_ps (50): Three interlocking harmonic series on 1:5:3 by Larry Polansky in Psaltery poole (7): Poole's double diatonic or dichordal scale porcupine (37): porcupine temperament, g=162.996, 5-limit portbag1 (7): Portugese bagpipe tuning portbag2 (10): Portugese bagpipe tuning 2 prelleur (12): Peter Prelleur's well temperament (1731) preston (12): Preston's equal beating temperament (1785) preston2 (12): Preston's theoretically correct well temperament prime_10 (10): First 10 prime numbers reduced by 2/1 prime_5 (5): What Lou Harrison calls "the Prime Pentatonic", a widely used scale primes6 (6): First 6 primes prinz (12): Prinz well-tempermament (1808) prinz2 (12): Prinz equal beating temperament (1808) prod13-2 (21): 13-limit binary products [1 3 5 7 11 13] prod13 (27): 13-limit binary products [1 3 5 7 9 11 13] prod7d (39): Double Cubic Corner 7-limit. Chalmers '96 prod7s (20): Single Cubic Corner 7-limit prodq13 (40): 13-limit Binary products and quotients. Chalmers '96 prog_ennea (9): Progressive Enneatonic, 50+100+150+200 cents in each half (500 cents) prog_ennea1 (9): Progressive Enneatonic, appr. 50+100+150+200 cents in each half (500 cents) prog_ennea2 (9): Progressive Enneatonic, appr. 50+100+200+150 cents in each half (500 cents) prog_ennea3 (9): Progressive Enneatonic, appr. 50+100+150+200 cents in each half (500 cents) prooijen1 (7): Kees van Prooijen, major mode of Bohlen-Pierce prooijen2 (7): Kees van Prooijen, minor mode of Bohlen-Pierce ps-dorian (7): Complex 4 of p. 115 based on Archytas's Enharmonic ps-enh (7): Dorian mode of an Enharmonic genus found in Ptolemy's Harmonics ps-hypod (7): Complex 7 of p. 115 based on Archytas's Enharmonic ps-hypod2 (7): Complex 8 of p. 115 based on Archytas's Enharmonic ps-mixol (7): Complex 3 of p. 115 based on Archytas's Enharmonic ptolemy (7): Intense Diatonic Syntonon, also Zarlino's scale ptolemy_chrom (7): Ptolemy Soft Chromatic ptolemy_ddiat (7): Lyra tuning, Dorian mode, comb. of diatonon toniaion & diatonon ditoniaion ptolemy_diat (7): Ptolemy's Diatonon Ditoniaion & Archytas' Diatonic, also Lyra tuning ptolemy_diat2 (7): Dorian mode of a permutation of Ptolemy's Tonic Diatonic ptolemy_diat3 (7): Dorian mode of the remaining permutation of Ptolemy's Intense Diatonic ptolemy_diat4 (7): permuted Ptolemy's diatonic ptolemy_diat5 (7): Sterea lyra, Dorian, comb. of 2 Tonic Diatonic 4chords, also Archytas' diatonic ptolemy_diff (7): Difference tones of Intense Diatonic reduced by 2/1 ptolemy_enh (7): Dorian mode of Ptolemy's Enharmonic ptolemy_exp (24): Intense Diatonic expanded: all interval combinations ptolemy_hom (7): Dorian mode of Ptolemy's Equable Diatonic or Diatonon Homalon ptolemy_iast (7): Ptolemy's Iastia or Lydia tuning, mixture of Tonic Diatonic & Intense Diatonic ptolemy_iastaiol (7): Ptolemy's kithara tuning, mixture of Tonic Diatonic and Ditone Diatonic ptolemy_ichrom (7): Dorian mode of Ptolemy's Intense Chromatic ptolemy_idiat (7): Dorian mode of Ptolemy's Intense Diatonic (Diatonon Syntonon) ptolemy_imix (11): Ptolemy Intense Diatonic mixed with its inverse ptolemy_malak (7): Ptolemy's Malaka lyra tuning, a mixture of Intense Chrom. & Tonic Diatonic ptolemy_malak2 (7): Malaka lyra, mixture of his Soft Chromatic and Tonic Diatonic. ptolemy_mdiat (7): Ptolemy soft diatonic ptolemy_mdiat2 (7): permuted Ptolemy soft diatonic ptolemy_mdiat3 (7): permuted Ptolemy soft diatonic ptolemy_meta (7): Metabolika lyra tuning, mixture of Soft Diatonic & Tonic Diatonic ptolemy_mix (19): All modes of Ptolemy Intense Diatonic mixed ptolemy_prod (21): Product of Intense Diatonic with its intervals ptolemy_tree (14): Intense Diatonic with all their Farey parent fractions pygmie (5): Pygmie scale pyle (12): Howard Willet Pyle quasi equal temperament pyramid (12): This scale may also be called the "Wedding Cake" pyramid_down (12): Upside-Down Wedding Cake (divorce cake) pyth_12 (12): 12-tone Pythagorean scale pyth_12s (12): Scale with major thirds flat by a schisma pyth_17 (17): 17-tone Pythagorean scale pyth_17s (17): Schismatically altered 17-tone Pythagorean scale pyth_22 (22): Pythagorean shrutis pyth_27 (27): 27-tone Pythagorean scale pyth_31 (31): 31-tone Pythagorean scale pyth_7a (12): Pythagorean 7-tone with whole tones divided arithmetically pyth_7h (12): Pythagorean 7-tone with whole tones divided harmonically pyth_chrom (8): Dorian mode of the so-called Pythagorean chromatic, recorded by Gaudentius pyth_sev (26): 26-tone Pythagorean scale based on 7/4 pyth_sev_16 (16): 16-tone Pythagorean scale based on 7/4, "Armodue" pyth_third (31): Cycle of 5/4 thirds